These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 8819168)
1. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases. Beveridge AJ Protein Sci; 1996 Jul; 5(7):1355-65. PubMed ID: 8819168 [TBL] [Abstract][Full Text] [Related]
2. Introduction of a cysteine protease active site into trypsin. Higaki JN; Evnin LB; Craik CS Biochemistry; 1989 Nov; 28(24):9256-63. PubMed ID: 2611227 [TBL] [Abstract][Full Text] [Related]
3. Rapid kinetic studies and structural determination of a cysteine proteinase mutant imply that residue 158 in caricain has a major effect upon the ability of the active site histidine to protonate a dipyridyl probe. Katerelos NA; Goodenough PW Biochemistry; 1996 Nov; 35(47):14763-72. PubMed ID: 8942638 [TBL] [Abstract][Full Text] [Related]
5. A theoretical study of torsional flexibility in the active site of aspartic proteinases: implications for catalysis. Beveridge A Proteins; 1996 Mar; 24(3):322-34. PubMed ID: 8778779 [TBL] [Abstract][Full Text] [Related]
6. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study. Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187 [TBL] [Abstract][Full Text] [Related]
7. Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. seeds with double activity toward serine- and cysteine-proteinases. Migliolo L; de Oliveira AS; Santos EA; Franco OL; de Sales MP J Mol Graph Model; 2010 Sep; 29(2):148-56. PubMed ID: 20816329 [TBL] [Abstract][Full Text] [Related]
8. Overlapping binding sites for trypsin and papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora. Franco OL; Grossi de Sá MF; Sales MP; Mello LV; Oliveira AS; Rigden DJ Proteins; 2002 Nov; 49(3):335-41. PubMed ID: 12360523 [TBL] [Abstract][Full Text] [Related]
9. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Topham CM; Salih E; Frazao C; Kowlessur D; Overington JP; Thomas M; Brocklehurst SM; Patel M; Thomas EW; Brocklehurst K Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):79-92. PubMed ID: 1741760 [TBL] [Abstract][Full Text] [Related]
10. Theoretical evaluation of a model of the catalytic triads of serine and cysteine proteases by ab initio molecular orbital calculation. Nishihira J; Tachikawa H J Theor Biol; 1999 Feb; 196(4):513-9. PubMed ID: 10036203 [TBL] [Abstract][Full Text] [Related]
11. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related]
12. Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms. Kaslik G; Westler WM; Gráf L; Markley JL Arch Biochem Biophys; 1999 Feb; 362(2):254-64. PubMed ID: 9989934 [TBL] [Abstract][Full Text] [Related]
13. The active site of phosphorylating glyceraldehyde-3-phosphate dehydrogenase is not designed to increase the nucleophilicity of a serine residue. Boschi-Muller S; Branlant G Arch Biochem Biophys; 1999 Mar; 363(2):259-66. PubMed ID: 10068447 [TBL] [Abstract][Full Text] [Related]
14. [Study of trypsin-substrate and trypsin-inhibitor complexes. 1. Conformation of Asp-102, His-57 and Ser-195 residues in the trypsin active center]. Godzhaev NM Mol Biol (Mosk); 1984; 18(5):1432-5. PubMed ID: 6438492 [TBL] [Abstract][Full Text] [Related]
15. QM/MM study of the active site of free papain and of the NMA-papain complex. Han WG; Tajkhorshid E; Suhai S J Biomol Struct Dyn; 1999 Apr; 16(5):1019-32. PubMed ID: 10333172 [TBL] [Abstract][Full Text] [Related]
16. A theoretical study of substrate-induced activation of dienelactone hydrolase. Beveridge AJ; Ollis DL Protein Eng; 1995 Feb; 8(2):135-42. PubMed ID: 7630883 [TBL] [Abstract][Full Text] [Related]
17. Role of the single cysteine residue, Cys 3, of human and bovine cystatin B (stefin B) in the inhibition of cysteine proteinases. Pol E; Björk I Protein Sci; 2001 Sep; 10(9):1729-38. PubMed ID: 11514663 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of rat trypsin-S195C at -150 degrees C. Analysis of low activity of recombinant and semisynthetic thiol proteases. Wilke ME; Higaki JN; Craik CS; Fletterick RJ J Mol Biol; 1991 Jun; 219(3):511-23. PubMed ID: 1904942 [TBL] [Abstract][Full Text] [Related]
19. The unusual catalytic triad of poliovirus protease 3C. Sárkány Z; Polgár L Biochemistry; 2003 Jan; 42(2):516-22. PubMed ID: 12525179 [TBL] [Abstract][Full Text] [Related]
20. ECEPE proteins: a novel family of eukaryotic cysteine proteinases. Ginalski K; Zemojtel T Trends Biochem Sci; 2004 Oct; 29(10):524-6. PubMed ID: 15450606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]