These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8819347)

  • 1. Cardiac sensitization thresholds of halon replacement chemicals predicted in humans by physiologically-based pharmacokinetic modeling.
    Vinegar A; Jepson GW
    Risk Anal; 1996 Aug; 16(4):571-9. PubMed ID: 8819347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Setting safe acute exposure limits for halon replacement chemicals using physiologically based pharmacokinetic modeling.
    Vinegar A; Jepson GW; Cisneros M; Rubenstein R; Brock WJ
    Inhal Toxicol; 2000 Aug; 12(8):751-63. PubMed ID: 10880155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PBPK modeling of canine inhalation exposures to halogenated hydrocarbons.
    Vinegar A
    Toxicol Sci; 2001 Mar; 60(1):20-7. PubMed ID: 11222869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated blood levels of CF3I in personnel exposed during its release from an F-15 jet engine nacelle and during intentional inhalation.
    Vinegar A; Jepson GW; Hammann SJ; Harper G; Dierdorf DS; Overton JH
    Am Ind Hyg Assoc J; 1999; 60(3):403-8. PubMed ID: 10386362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac sensitization testing of the halon replacement candidates trifluoroiodomethane (CF3I) and 1,1,2,2,3,3,3-heptafluoro-1-iodopropane (C3F7I).
    Dodd DE; Vinegar A
    Drug Chem Toxicol; 1998 May; 21(2):137-49. PubMed ID: 9598296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling cardiac sensitization potential of humans exposed to Halon 1301 or Halon 1211 aboard aircraft.
    Vinegar A
    Aviat Space Environ Med; 2001 Oct; 72(10):928-36. PubMed ID: 11601558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trifluoroiodomethane (CF3I) (2019).
    Toxicol Ind Health; 2020 May; 36(5):310-321. PubMed ID: 32546062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac sensitization: methodology and interpretation in risk assessment.
    Brock WJ; Rusch GM; Trochimowicz HJ
    Regul Toxicol Pharmacol; 2003 Aug; 38(1):78-90. PubMed ID: 12878057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute and subchronic inhalation studies on trifluoroiodomethane vapor in Fischer 344 rats.
    Dodd DE; Kinkead ER; Wolfe RE; Leahy HF; English JH; Vinegar A
    Fundam Appl Toxicol; 1997 Jan; 35(1):64-77. PubMed ID: 9024674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of acute dynamic ventilation changes into a standardized physiologically based pharmacokinetic model.
    Ng LJ; Stuhmiller LM; Stuhmiller JH
    Inhal Toxicol; 2007 Mar; 19(3):247-63. PubMed ID: 17365028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac arrhythmias and blood levels associated with inhalation of Halon 1301.
    Mullin LS; Reinhardt CF; Hemingway RE
    Am Ind Hyg Assoc J; 1979 Jul; 40(7):653-8. PubMed ID: 484490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.
    Kirman CR; Sweeney LM; Corley R; Gargas ML
    Risk Anal; 2005 Apr; 25(2):271-84. PubMed ID: 15876203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human health and environmental toxicity issues for evaluation of halon replacements.
    Rubenstein R
    Toxicol Lett; 1993 May; 68(1-2):21-4. PubMed ID: 8516765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of a site-specific reference dose for methylmercury for fish-eating populations.
    Shipp AM; Gentry PR; Lawrence G; Van Landingham C; Covington T; Clewell HJ; Gribben K; Crump K
    Toxicol Ind Health; 2000 Nov; 16(9-10):335-438. PubMed ID: 11762928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiologically based modeling of nonsteady state dermal absorption of halogenated methanes from an aqueous solution.
    Jepson GW; McDougal JN
    Toxicol Appl Pharmacol; 1997 Jun; 144(2):315-24. PubMed ID: 9194415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the LOAEL-to-NOAEL uncertainty factor for mild adverse effects from acute inhalation exposures.
    Alexeeff GV; Broadwin R; Liaw J; Dawson SV
    Regul Toxicol Pharmacol; 2002 Aug; 36(1):96-105. PubMed ID: 12383722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking internal dosimetries of the propyl metabolic series in rats and humans using physiologically based pharmacokinetic (PBPK) modeling.
    Smith JN; Tyrrell KJ; Smith JP; Weitz KK; Faber W
    Regul Toxicol Pharmacol; 2020 Feb; 110():104507. PubMed ID: 31669189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism and pharmacokinetics of selected halon replacement candidates.
    Dodd DE; Brashear WT; Vinegar A
    Toxicol Lett; 1993 May; 68(1-2):37-47. PubMed ID: 8516773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air Force approach to risk assessment for halon replacements.
    McDougal JN; Dodd DE
    Toxicol Lett; 1993 May; 68(1-2):31-5. PubMed ID: 8516772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.