These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8819480)

  • 1. Extracellular acidosis and chloride channel inhibitors act in the late phase of cellular injury to prevent death.
    Waters SL; Schnellmann RG
    J Pharmacol Exp Ther; 1996 Sep; 278(3):1012-7. PubMed ID: 8819480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linoleic acid prevents chloride influx and cellular lysis in rabbit renal proximal tubules exposed to mitochondrial toxicants.
    Moran JH; Mitchell LA; Grant DF
    Toxicol Appl Pharmacol; 2001 Nov; 176(3):153-61. PubMed ID: 11714247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calpains mediate calcium and chloride influx during the late phase of cell injury.
    Waters SL; Sarang SS; Wang KK; Schnellmann RG
    J Pharmacol Exp Ther; 1997 Dec; 283(3):1177-84. PubMed ID: 9399991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depletion of endoplasmic reticulum calcium stores protects against hypoxia- and mitochondrial inhibitor-induced cellular injury and death.
    Waters SL; Wong JK; Schnellmann RG
    Biochem Biophys Res Commun; 1997 Nov; 240(1):57-60. PubMed ID: 9367881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular acidosis ameliorates metabolic-inhibitor-induced and potentiates oxidant-induced cell death in renal proximal tubules.
    Rodeheaver DP; Schnellmann RG
    J Pharmacol Exp Ther; 1993 Jun; 265(3):1355-60. PubMed ID: 8510014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.
    Babot Z; Cristòfol R; Suñol C
    Eur J Neurosci; 2005 Jan; 21(1):103-12. PubMed ID: 15654847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitors of renal chloride transport do not block toxicant-induced chloride influx in the proximal tubule.
    Miller GW; Schnellmann RG
    Toxicol Lett; 1995 Mar; 76(2):179-84. PubMed ID: 7725349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arachidonic acid release in renal proximal tubule cell injuries and death.
    Schnellmann RG; Yang X; Carrick JB
    J Biochem Toxicol; 1994 Aug; 9(4):211-7. PubMed ID: 7853355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strychnine and glycine protect renal proximal tubules from various nephrotoxicants and act in the late phase of necrotic cell injury.
    Miller GW; Lock EA; Schnellmann RG
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):192-7. PubMed ID: 8171427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of the mechanisms of action of diverse cytoprotectants in renal cell death.
    Waters SL; Schnellmann RG
    Toxicol Pathol; 1998; 26(1):58-63. PubMed ID: 9502388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progressive disruption of the plasma membrane during renal proximal tubule cellular injury.
    Chen J; Liu X; Mandel LJ; Schnellmann RG
    Toxicol Appl Pharmacol; 2001 Feb; 171(1):1-11. PubMed ID: 11181106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP depletion by iodoacetate and cyanide in renal distal tubular cells.
    Lash LH; Tokarz JJ; Chen Z; Pedrosi BM; Woods EB
    J Pharmacol Exp Ther; 1996 Jan; 276(1):194-205. PubMed ID: 8558430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytosolic ionized calcium and bleb formation after acute cell injury of cultured rabbit renal tubule cells.
    Phelps PC; Smith MW; Trump BF
    Lab Invest; 1989 May; 60(5):630-42. PubMed ID: 2654473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible participation of chloride ion channels in ATP release from cancer cells in suspension.
    Nejime N; Kagota S; Tada Y; Nakamura K; Hashimoto M; Kunitomo M; Shinozuka K
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):278-82. PubMed ID: 18986334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride secretion by porcine ciliary epithelium: New insight into species similarities and differences in aqueous humor formation.
    Kong CW; Li KK; To CH
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5428-36. PubMed ID: 17122133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse cytoprotectants prevent cell lysis and promote recovery of respiration and ion transport.
    Moran JH; Schnellmann RG
    Biochem Biophys Res Commun; 1997 May; 234(1):275-7. PubMed ID: 9169002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetrakisphosphate.
    Zonia L; Cordeiro S; Tupý J; Feijó JA
    Plant Cell; 2002 Sep; 14(9):2233-49. PubMed ID: 12215517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of pH amelioration of 2-bromohydroquinone-induced toxicity to rabbit renal proximal tubules.
    Rodeheaver DP; Schnellmann RG
    J Pharmacol Exp Ther; 1991 Mar; 256(3):917-21. PubMed ID: 2005588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteinases in renal cell death.
    Yang X; Schnellmann RG
    J Toxicol Environ Health; 1996 Jul; 48(4):319-32. PubMed ID: 8691504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reevaluation of Cl-/HCO3- exchange in cultured bovine corneal endothelial cells.
    Bonanno JA; Yi G; Kang XJ; Srinivas SP
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2713-22. PubMed ID: 9856782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.