These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8819817)

  • 1. A statistical theory for flow cytometry profiles in terms of the binding of ligands to cell surface receptors and changes in gene expression.
    Bardsley WG; Kyprianou EK
    J Math Biol; 1996; 34(3):271-96. PubMed ID: 8819817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistical model and computer program to estimate association constants for the binding of fluorescent-labelled monoclonal antibodies to cell surface antigens and to interpret shifts in flow cytometry data resulting from alterations in gene expression.
    Bardsley WG; Wilson AR; Kyprianou EK; Melikhova EM
    J Immunol Methods; 1992 Aug; 153(1-2):235-47. PubMed ID: 1517595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring human neutrophil granule secretion by flow cytometry: secretion and membrane potential changes assessed by light scatter and a fluorescent probe of membrane potential.
    Fletcher MP; Seligmann BE
    J Leukoc Biol; 1985 Apr; 37(4):431-47. PubMed ID: 3855949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid expression cloning of receptors using epitope-tagged ligands and high-speed cell sorting.
    Robeva AS; Yan-Neale Y; Burfeind P; Bodian DL; Chirn GW; Kolbinger F; Labow M; Vallon RD
    Cytometry A; 2003 Feb; 51(2):59-67. PubMed ID: 12541280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KINFIT II: a nonlinear least-squares program for analysis of kinetic binding data.
    Rovati GE; Shrager R; Nicosia S; Munson PJ
    Mol Pharmacol; 1996 Jul; 50(1):86-95. PubMed ID: 8700124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of ligand-receptor interactions with the fluorescence activated cell sorter.
    Sklar LA; Finney DA
    Cytometry; 1982 Nov; 3(3):161-5. PubMed ID: 6293787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutrophil degranulation detected by right angle light scattering: spectroscopic methods suitable for simultaneous analyses of degranulation or shape change, elastase release, and cell aggregation.
    Sklar LA; Oades ZG; Finney DA
    J Immunol; 1984 Sep; 133(3):1483-7. PubMed ID: 6086759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of cellular autofluorescence in flow cytometry by mathematical modeling of cellular fluorescence.
    Corsetti JP; Sotirchos SV; Cox C; Cowles JW; Leary JF; Blumburg N
    Cytometry; 1988 Nov; 9(6):539-47. PubMed ID: 3208620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple receptor populations: binding isotherms and their numerical analysis.
    Pliska V
    J Recept Signal Transduct Res; 1995; 15(1-4):651-75. PubMed ID: 8903971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of receptor binding displacement curves by a nonhomologous ligand, on the basis of an equivalent competition principle.
    van Zoelen EJ
    Anal Biochem; 1992 Feb; 200(2):393-9. PubMed ID: 1321566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphasic modelling of ligand/acceptor interactions. The hydrophobicity-dependent binding of relatively small amphiphilic substances to acceptor proteins and the nature and facedness of acceptor sites.
    Heirwegh KP; Vermeir M; Zaman Z
    J Biochem Biophys Methods; 1994 Jul; 29(1):23-47. PubMed ID: 7989645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta nerve growth factor binding to PC12 cells. Association kinetics and cooperative interactions.
    Woodruff NR; Neet KE
    Biochemistry; 1986 Dec; 25(24):7956-66. PubMed ID: 3026465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental artifacts and the analysis of ligand binding data: results of a computer simulation.
    Munson PJ
    J Recept Res; 1983; 3(1-2):249-59. PubMed ID: 6304302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-receptor interaction rates in the presence of convective mass transport.
    Model MA; Omann GM
    Biophys J; 1995 Nov; 69(5):1712-20. PubMed ID: 8580315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time dependent rate of diffusion-influenced ligand binding to receptors on cell surfaces.
    Zwanzig R; Szabo A
    Biophys J; 1991 Sep; 60(3):671-8. PubMed ID: 1657231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction study between synthetic glycoconjugate ligands and endocytic receptors using flow cytometry.
    Yura H; Ishihara M; Kanatani Y; Takase B; Hattori H; Suzuki S; Kawakami M; Matsui T
    J Biochem; 2006 Apr; 139(4):637-43. PubMed ID: 16672263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platelet aggregation in flow: differential roles for adhesive receptors and ligands.
    Frojmovic MM
    Am Heart J; 1998 May; 135(5 Pt 2 Su):S119-31. PubMed ID: 9588391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of ligand binding to receptors.
    Franklin TJ
    J Neural Transm Suppl; 1983; 18():55-60. PubMed ID: 6308153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alternative derivation of the binding equation for multivalent ligands.
    Winzor DJ
    Anal Biochem; 2002 Sep; 308(2):409-10. PubMed ID: 12419359
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of resolution reduction on data analysis.
    Hunsberger B; Bagwell CB; Herbert D; Bray C; Langweiler M
    Cytometry A; 2003 Jun; 53(2):103-11. PubMed ID: 12766972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.