These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 8819827)
1. Capillary gas chromatographic analysis of nerve agents using large volume injections. Degenhardt-Langelaan CE; Kientz CE J Chromatogr A; 1996 Feb; 723(1):210-4. PubMed ID: 8819827 [TBL] [Abstract][Full Text] [Related]
2. Stereochemical analysis of the nerve agents soman, sarin, tabun, and VX by proton NMR-spectroscopy with optically active shift reagents. Van den Berg GR; Beck HC; Benschop HP Bull Environ Contam Toxicol; 1984 Nov; 33(5):505-14. PubMed ID: 6498353 [No Abstract] [Full Text] [Related]
3. [Determination of five nerve agents in contaminated serum by gas chromatography]. Feng C; Xie J Se Pu; 2005 Jan; 23(1):108. PubMed ID: 15881381 [No Abstract] [Full Text] [Related]
4. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
5. Hydroxy oximes as organophosphorus nerve agent sensors. Dale TJ; Rebek J Angew Chem Int Ed Engl; 2009; 48(42):7850-2. PubMed ID: 19757467 [No Abstract] [Full Text] [Related]
6. Improving Quantification of tabun, sarin, soman, cyclosarin, and sulfur mustard by focusing agents: A field portable gas chromatography-mass spectrometry study. Kelly JT; Qualley A; Hughes GT; Rubenstein MH; Malloy TA; Piatkowski T J Chromatogr A; 2021 Jan; 1636():461784. PubMed ID: 33360649 [TBL] [Abstract][Full Text] [Related]
7. Measurements of chemical warfare agent degradation products using an electrophoresis microchip with contactless conductivity detector. Wang J; Pumera M; Collins GE; Mulchandani A Anal Chem; 2002 Dec; 74(23):6121-5. PubMed ID: 12498212 [TBL] [Abstract][Full Text] [Related]
8. Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with (1)H- (31)P HSQC NMR spectroscopy. Gäb J; Melzer M; Kehe K; Wellert S; Hellweg T; Blum MM Anal Bioanal Chem; 2010 Feb; 396(3):1213-21. PubMed ID: 19943158 [TBL] [Abstract][Full Text] [Related]
9. Catalyzed hydrolysis of nerve gases by metal chelate compounds and potentiometric detection of the byproducts. Xie Y; Popov BN Anal Chem; 2000 May; 72(9):2075-9. PubMed ID: 10815968 [TBL] [Abstract][Full Text] [Related]
10. Quantification of organophosphorus nerve agent metabolites using a reduced-volume, high-throughput sample processing format and liquid chromatography-tandem mass spectrometry. Swaim LL; Johnson RC; Zhou Y; Sandlin C; Barr JR J Anal Toxicol; 2008; 32(9):774-7. PubMed ID: 19021934 [TBL] [Abstract][Full Text] [Related]
11. Detector for organophosphorus compounds in liquid chromatography based on the cholinesterase inhibition reaction. Sipponen KB J Chromatogr; 1987 Feb; 389(1):87-94. PubMed ID: 3571362 [TBL] [Abstract][Full Text] [Related]
12. Determination of alkylmethylphosphonic acids, the main metabolites of organophosphorus nerve agents, in biofluids by gas chromatography-mass spectrometry and liquid-liquid-solid-phase-transfer-catalyzed pentafluorobenzylation. Miki A; Katagi M; Tsuchihashi H; Yamashita M J Anal Toxicol; 1999; 23(2):86-93. PubMed ID: 10192410 [TBL] [Abstract][Full Text] [Related]
13. Detection of Chemical Weapon Nerve Agents in Bone by Liquid Chromatography-Mass Spectrometry. Rubin KM; Goldberger BA; Garrett TJ J Anal Toxicol; 2020 May; 44(4):391-401. PubMed ID: 32103269 [TBL] [Abstract][Full Text] [Related]
14. Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a boron dipyrromethene (BODIPY) dye. Barba-Bon A; Costero AM; Gil S; Martínez-Máñez R; Sancenón F Org Biomol Chem; 2014 Nov; 12(43):8745-51. PubMed ID: 25260024 [TBL] [Abstract][Full Text] [Related]
15. Analysis of Nerve Agent Metabolites from Hair for Long-Term Verification of Nerve Agent Exposure. Appel AS; McDonough JH; McMonagle JD; Logue BA Anal Chem; 2016 Jun; 88(12):6523-30. PubMed ID: 27161086 [TBL] [Abstract][Full Text] [Related]
16. Modifications to the organophosphorus nerve agent-protein adduct refluoridation method for retrospective analysis of nerve agent exposures. Holland KE; Solano MI; Johnson RC; Maggio VL; Barr JR J Anal Toxicol; 2008; 32(1):116-24. PubMed ID: 18269803 [TBL] [Abstract][Full Text] [Related]
17. A molecular probe for the highly selective chromogenic detection of DFP, a mimic of Sarin and Soman nerve agents. Gotor R; Costero AM; Gil S; Parra M; Martínez-Máñez R; Sancenón F Chemistry; 2011 Oct; 17(43):11994-7. PubMed ID: 21922586 [No Abstract] [Full Text] [Related]
18. [The effect of the source of cholinesterase on the sensitivity of the enzyme method for detecting nerve toxins in chemical warfare]. Toković B; Sek S; Cusić S; Kojić J Vojnosanit Pregl; 1981; 38(5):326-9. PubMed ID: 7324389 [No Abstract] [Full Text] [Related]
19. Packed capillary liquid chromatography-electrospray mass spectrometry analysis of organophosphorus chemical warfare agents. D'Agostino PA; Hancock JR; Provost LR J Chromatogr A; 1999 Apr; 840(2):289-94. PubMed ID: 10343402 [TBL] [Abstract][Full Text] [Related]
20. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents. Christesen SD; Pendell Jones J; Lochner JM; Hyre AM Appl Spectrosc; 2008 Oct; 62(10):1078-83. PubMed ID: 18926015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]