These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8819852)
41. The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion. Edom E; Obrist D; Henniger R; Kleiser L; Sim JH; Huber AM J Acoust Soc Am; 2013 Nov; 134(5):3749-58. PubMed ID: 24180785 [TBL] [Abstract][Full Text] [Related]
42. Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. Russell IJ; Murugasu E J Acoust Soc Am; 1997 Sep; 102(3):1734-8. PubMed ID: 9301050 [TBL] [Abstract][Full Text] [Related]
43. Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea. Cooper NP J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):277-88. PubMed ID: 9547400 [TBL] [Abstract][Full Text] [Related]
48. Timing of spike initiation in cochlear afferents: dependence on site of innervation. Ruggero MA; Rich NC J Neurophysiol; 1987 Aug; 58(2):379-403. PubMed ID: 3655874 [TBL] [Abstract][Full Text] [Related]
49. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera. Lupo JE; Koka K; Jenkins HA; Tollin DJ Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156 [TBL] [Abstract][Full Text] [Related]
50. The level dependence of response phase: observations from cochlear hair cells. Cheatham MA; Dallos P J Acoust Soc Am; 1998 Jul; 104(1):356-69. PubMed ID: 9670529 [TBL] [Abstract][Full Text] [Related]
51. The mechanical waveform of the basilar membrane. II. From data to models--and back. de Boer E; Nuttall AL J Acoust Soc Am; 2000 Mar; 107(3):1487-96. PubMed ID: 10738803 [TBL] [Abstract][Full Text] [Related]
54. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning. Raufer S; Verhulst S Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947 [TBL] [Abstract][Full Text] [Related]
55. Velocity and displacement coupling of mammalian inner hair cells and the mechanical resonance of the free-standing stereocilia. Patuzzi R; Yates GK ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):81-6. PubMed ID: 3703534 [TBL] [Abstract][Full Text] [Related]
56. Errors in measurement of three-dimensional motions of the stapes using a laser Doppler vibrometer system. Sim JH; Lauxmann M; Chatzimichalis M; Röösli C; Eiber A; Huber AM Hear Res; 2010 Dec; 270(1-2):4-14. PubMed ID: 20801206 [TBL] [Abstract][Full Text] [Related]
57. Acoustical inverse problem for the cochlea. Sondhi MM J Acoust Soc Am; 1981 Feb; 69(2):500-4. PubMed ID: 7462472 [TBL] [Abstract][Full Text] [Related]
58. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential. Offut G J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990 [TBL] [Abstract][Full Text] [Related]
59. Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration. Ruggero MA; Rich NC Hear Res; 1991 Feb; 51(2):215-30. PubMed ID: 1827787 [TBL] [Abstract][Full Text] [Related]
60. Development of an electrode for the artificial cochlear sensory epithelium. Tona Y; Inaoka T; Ito J; Kawano S; Nakagawa T Hear Res; 2015 Dec; 330(Pt A):106-12. PubMed ID: 26299844 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]