These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Applications of free-electron lasers in the biological and material sciences. Edwards GS; Allen SJ; Haglund RF; Nemanich RJ; Redlich B; Simon JD; Yang WC Photochem Photobiol; 2005; 81(4):711-35. PubMed ID: 15755193 [TBL] [Abstract][Full Text] [Related]
43. Cluster analysis of soft X-ray spectromicroscopy data. Lerotic M; Jacobsen C; Schäfer T; Vogt S Ultramicroscopy; 2004 Jul; 100(1-2):35-57. PubMed ID: 15219691 [TBL] [Abstract][Full Text] [Related]
44. 3-D analysis of semiconductor dopant distributions in a patterned structure using LEAP. Moore JS; Jones KS; Kennel H; Corcoran S Ultramicroscopy; 2008 May; 108(6):536-9. PubMed ID: 18031933 [TBL] [Abstract][Full Text] [Related]
45. A versatile system for ultrahigh resolution, low temperature, and polarization dependent laser-angle-resolved photoemission spectroscopy. Kiss T; Shimojima T; Ishizaka K; Chainani A; Togashi T; Kanai T; Wang XY; Chen CT; Watanabe S; Shin S Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023106. PubMed ID: 18315282 [TBL] [Abstract][Full Text] [Related]
46. X-Ray microanalytical techniques based on synchrotron radiation. Snigireva I; Snigirev A J Environ Monit; 2006 Jan; 8(1):33-42. PubMed ID: 16395457 [TBL] [Abstract][Full Text] [Related]
47. A new spin-polarized photoemission spectrometer with very high efficiency and energy resolution. Okuda T; Takeichi Y; Maeda Y; Harasawa A; Matsuda I; Kinoshita T; Kakizaki A Rev Sci Instrum; 2008 Dec; 79(12):123117. PubMed ID: 19123555 [TBL] [Abstract][Full Text] [Related]
48. Free-electron lasers. Status and applications. O'Shea PG; Freund HP Science; 2001 Jun; 292(5523):1853-8. PubMed ID: 11397938 [TBL] [Abstract][Full Text] [Related]
49. In situ positioning of a few hundred micrometer-sized cleaved surfaces for soft-x-ray angle-resolved photoemission spectroscopy by use of an optical microscope. Muro T; Kato Y; Matsushita T; Kinoshita T; Watanabe Y; Sekiyama A; Sugiyama H; Kimura M; Komori S; Suga S; Okazaki H; Yokoya T Rev Sci Instrum; 2009 May; 80(5):053901. PubMed ID: 19485514 [TBL] [Abstract][Full Text] [Related]
50. Mechanism of water augmentation during IR laser ablation of dental enamel. Fried D; Ashouri N; Breunig T; Shori R Lasers Surg Med; 2002; 31(3):186-93. PubMed ID: 12224092 [TBL] [Abstract][Full Text] [Related]
51. Direct observation of magnetic contrast obtained by photoemission electron microscopy with deep ultra-violet laser excitation. Zhao YC; Lyu HC; Yang G; Dong BW; Qi J; Zhang JY; Zhu ZZ; Sun Y; Yu GH; Jiang Y; Wei HX; Wang J; Lu J; Wang ZH; Cai JW; Shen BG; Zhan WS; Yang F; Zhang SJ; Wang SG Ultramicroscopy; 2019 Jul; 202():156-162. PubMed ID: 31063898 [TBL] [Abstract][Full Text] [Related]
52. Origin and tailoring of the antiferromagnetic domain structure in α-Fe2O3 thin films unraveled by statistical analysis of dichroic spectromicroscopy (x-ray photoemission electron microscopy) images. Bezencenet O; Bonamy D; Belkhou R; Ohresser P; Barbier A Phys Rev Lett; 2011 Mar; 106(10):107201. PubMed ID: 21469826 [TBL] [Abstract][Full Text] [Related]
53. Temporal resolution in transmission electron microscopy using a photoemission electron source. Kuwahara M; Agemura T Microscopy (Oxf); 2023 Apr; 72(2):97-110. PubMed ID: 36508300 [TBL] [Abstract][Full Text] [Related]
54. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures. Radaelli PG; Dhesi SS Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2036):. PubMed ID: 25624510 [TBL] [Abstract][Full Text] [Related]