These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8819979)

  • 1. Estimation of binding free energies for HIV proteinase inhibitors by molecular dynamics simulations.
    Hansson T; Aqvist J
    Protein Eng; 1995 Nov; 8(11):1137-44. PubMed ID: 8819979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations.
    Jenwitheesuk E; Samudrala R
    BMC Struct Biol; 2003 Apr; 3():2. PubMed ID: 12675950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the molecular dynamics and calculated binding free energies for nine FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV PR.
    Ahmed SM; Kruger HG; Govender T; Maguire GE; Sayed Y; Ibrahim MA; Naicker P; Soliman ME
    Chem Biol Drug Des; 2013 Feb; 81(2):208-18. PubMed ID: 23017010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir.
    Chen X; Weber IT; Harrison RW
    J Mol Model; 2004 Dec; 10(5-6):373-81. PubMed ID: 15597206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding.
    Thorsteinsdottir HB; Schwede T; Zoete V; Meuwly M
    Proteins; 2006 Nov; 65(2):407-23. PubMed ID: 16941468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energy perturbation studies on binding of A-74704 and its diester analog to HIV-1 protease.
    Rao BG; Murcko MA
    Protein Eng; 1996 Sep; 9(9):767-71. PubMed ID: 8888142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance.
    Alcaro S; Artese A; Ceccherini-Silberstein F; Ortuso F; Perno CF; Sing T; Svicher V
    J Chem Inf Model; 2009 Jul; 49(7):1751-61. PubMed ID: 19537723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study.
    Maphumulo SI; Halder AK; Govender T; Maseko S; Maguire GEM; Honarparvar B; Kruger HG
    Chem Biol Drug Des; 2018 Nov; 92(5):1899-1913. PubMed ID: 30003668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of relative differences in the binding free energies of HIV1 protease inhibitors: a thermodynamic cycle perturbation approach.
    Reddy MR; Varney MD; Kalish V; Viswanadhan VN; Appelt K
    J Med Chem; 1994 Apr; 37(8):1145-52. PubMed ID: 8164256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases.
    Sadiq SK; Wright DW; Kenway OA; Coveney PV
    J Chem Inf Model; 2010 May; 50(5):890-905. PubMed ID: 20384328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A priori molecular descriptors in QSAR: a case of HIV-1 protease inhibitors. II. Molecular graphics and modeling.
    Kiralj R; Ferreira MM
    J Mol Graph Model; 2003 Jun; 21(6):499-515. PubMed ID: 12676237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in automated docking applied to human immunodeficiency virus type 1 protease.
    Miller MD; Sheridan RP; Kearsley SK; Underwood DJ
    Methods Enzymol; 1994; 241():354-70. PubMed ID: 7854188
    [No Abstract]   [Full Text] [Related]  

  • 13. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K; Hannongbua S; Feig M
    J Comput Chem; 2008 Apr; 29(5):673-85. PubMed ID: 17849388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enthalpy-Entropy Compensation upon Molecular Conformational Changes.
    Ahmad M; Helms V; Lengauer T; Kalinina OV
    J Chem Theory Comput; 2015 Apr; 11(4):1410-8. PubMed ID: 26574352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state.
    Hornak V; Okur A; Rizzo RC; Simmerling C
    J Am Chem Soc; 2006 Mar; 128(9):2812-3. PubMed ID: 16506755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimates of relative binding free energies for HIV protease inhibitors using different levels of approximations.
    Lee CY; Yang PK; Tzou WS; Hwang MJ
    Protein Eng; 1998 Jun; 11(6):429-37. PubMed ID: 9725621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
    Lepsík M; Kríz Z; Havlas Z
    Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK; Wright D; Watson SJ; Zasada SJ; Stoica I; Coveney PV
    J Chem Inf Model; 2008 Sep; 48(9):1909-19. PubMed ID: 18710212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.
    Jenwitheesuk E; Samudrala R
    Antivir Ther; 2005; 10(1):157-66. PubMed ID: 15751773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations.
    Hu GD; Zhu T; Zhang SL; Wang D; Zhang QG
    Eur J Med Chem; 2010 Jan; 45(1):227-35. PubMed ID: 19910081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.