These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8820565)

  • 1. Clostridium difficile toxins attack Rho.
    Wilkins TD; Lyerly DM
    Trends Microbiol; 1996 Feb; 4(2):49-51. PubMed ID: 8820565
    [No Abstract]   [Full Text] [Related]  

  • 2. Clostridium difficile toxins: more than mere inhibitors of Rho proteins.
    Genth H; Dreger SC; Huelsenbeck J; Just I
    Int J Biochem Cell Biol; 2008; 40(4):592-7. PubMed ID: 18289919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxin A-negative, toxin B-positive Clostridium difficile.
    Drudy D; Fanning S; Kyne L
    Int J Infect Dis; 2007 Jan; 11(1):5-10. PubMed ID: 16857405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upregulation of the immediate early gene product RhoB by exoenzyme C3 from Clostridium limosum and toxin B from Clostridium difficile.
    Huelsenbeck J; Dreger SC; Gerhard R; Fritz G; Just I; Genth H
    Biochemistry; 2007 Apr; 46(16):4923-31. PubMed ID: 17397186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial protein toxins inhibiting low-molecular-mass GTP-binding proteins.
    Just I; Hofmann F; Genth H; Gerhard R
    Int J Med Microbiol; 2001 Sep; 291(4):243-50. PubMed ID: 11680784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient expression of RhoA, -B, and -C GTPases in HeLa cells potentiates resistance to Clostridium difficile toxins A and B but not to Clostridium sordellii lethal toxin.
    Giry M; Popoff MR; von Eichel-Streiber C; Boquet P
    Infect Immun; 1995 Oct; 63(10):4063-71. PubMed ID: 7558320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mode of action of clostridial glucosylating toxins: the ABCD model.
    Jank T; Aktories K
    Trends Microbiol; 2008 May; 16(5):222-9. PubMed ID: 18394902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An outbreak of toxin A negative, toxin B positive Clostridium difficile-associated diarrhea in a Canadian tertiary-care hospital.
    al-Barrak A; Embil J; Dyck B; Olekson K; Nicoll D; Alfa M; Kabani A
    Can Commun Dis Rep; 1999 Apr; 25(7):65-9. PubMed ID: 10344088
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation by rho family GTPases of IL-1 receptor induced signaling: C3-like chimeric toxin and Clostridium difficile toxin B inhibit signaling pathways involved in IL-2 gene expression.
    Dreikhausen U; Varga G; Hofmann F; Barth H; Aktories K; Resch K; Szamel M
    Eur J Immunol; 2001 May; 31(5):1610-9. PubMed ID: 11465119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium difficile in adult patients with nosocomial diarrhea in a Costa Rican hospital.
    Zumbado-Salas R; Gamboa-Coronado Mdel M; RodrĂ­guez-Cavallini E; Chaves-Olarte E
    Am J Trop Med Hyg; 2008 Aug; 79(2):164-5. PubMed ID: 18689617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol, it's not just for heart disease anymore.
    Kerzmann A; Feig AL
    ACS Chem Biol; 2006 Apr; 1(3):141-4. PubMed ID: 17163660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial toxins and the Rho GTP-binding protein: what microbes teach us about cell regulation.
    Fiorentini C; Gauthier M; Donelli G; Boquet P
    Cell Death Differ; 1998 Sep; 5(9):720-8. PubMed ID: 10200530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevalence of enterotoxin producing Staphylococcus aureus in stools of patients with nosocomial diarrhea.
    Flemming K; Ackermann G
    Infection; 2007 Oct; 35(5):356-8. PubMed ID: 17721737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxic effects of the Clostridium difficile toxins.
    Thelestam M; Chaves-Olarte E
    Curr Top Microbiol Immunol; 2000; 250():85-96. PubMed ID: 10981358
    [No Abstract]   [Full Text] [Related]  

  • 15. Activation of MMP-2 by Clostridium difficile toxin B in bovine smooth muscle cells.
    Koike T; Kuzuya M; Asai T; Kanda S; Cheng XW; Watanabe K; Banno Y; Nozawa Y; Iguchi A
    Biochem Biophys Res Commun; 2000 Oct; 277(1):43-6. PubMed ID: 11027636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperphosphorylation of calnexin, a chaperone protein, induced by Clostridium difficile cytotoxin.
    Schué V; Green GA; Girardot R; Monteil H
    Biochem Biophys Res Commun; 1994 Aug; 203(1):22-8. PubMed ID: 8074658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium difficile infection frequency in patients with nosocomial infections or using antibiotics.
    Gursoy S; Guven K; Arikan T; Yurci A; Torun E; Baskol M; Ozbakir O; Yucesoy M
    Hepatogastroenterology; 2007 Sep; 54(78):1720-4. PubMed ID: 18019703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of methods for detection of toxins in specimens of feces submitted for diagnosis of Clostridium difficile-associated diarrhea.
    O'Connor D; Hynes P; Cormican M; Collins E; Corbett-Feeney G; Cassidy M
    J Clin Microbiol; 2001 Aug; 39(8):2846-9. PubMed ID: 11474001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Clostridium difficile-associated diarrhea among patients hospitalized in tertiary care academic hospital.
    Martirosian G; Szczesny A; Cohen SH; Silva J
    Diagn Microbiol Infect Dis; 2005 Jun; 52(2):153-5. PubMed ID: 15964504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What is the true burden of Clostridium difficile disease?
    Wren MW; Coen PG; Shetty NP
    J Hosp Infect; 2007 Oct; 67(2):196-7. PubMed ID: 17884251
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.