BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8820652)

  • 1. Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum.
    Babst M; Hennecke H; Fischer HM
    Mol Microbiol; 1996 Feb; 19(4):827-39. PubMed ID: 8820652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Bradyrhizobium japonicum rpoH1 gene encoding a sigma 32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes.
    Narberhaus F; Weiglhofer W; Fischer HM; Hennecke H
    J Bacteriol; 1996 Sep; 178(18):5337-46. PubMed ID: 8808920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of HrcA and CIRCE in the heat shock regulatory network of Bradyrhizobium japonicum.
    Minder AC; Fischer HM; Hennecke H; Narberhaus F
    J Bacteriol; 2000 Jan; 182(1):14-22. PubMed ID: 10613857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dnaKJ operon belongs to the sigma32-dependent class of heat shock genes in Bradyrhizobium japonicum.
    Minder AC; Narberhaus F; Babst M; Hennecke H; Fischer HM
    Mol Gen Genet; 1997 Mar; 254(2):195-206. PubMed ID: 9108282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis.
    Zuber U; Schumann W
    J Bacteriol; 1994 Mar; 176(5):1359-63. PubMed ID: 8113175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock activation of the groESL operon of Agrobacterium tumefaciens and the regulatory roles of the inverted repeat.
    Segal G; Ron EZ
    J Bacteriol; 1996 Jun; 178(12):3634-40. PubMed ID: 8655565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions.
    Wilson AC; Tan M
    J Bacteriol; 2004 Jun; 186(11):3384-91. PubMed ID: 15150223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoter selectivity of the Bradyrhizobium japonicum RpoH transcription factors in vivo and in vitro.
    Narberhaus F; Kowarik M; Beck C; Hennecke H
    J Bacteriol; 1998 May; 180(9):2395-401. PubMed ID: 9573191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes.
    Schulz A; Schumann W
    J Bacteriol; 1996 Feb; 178(4):1088-93. PubMed ID: 8576042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the nucleotide sequence of the groE operon encoding heat shock proteins chaperone-60 and -10 of Francisella tularensis and determination of the T-cell response to the proteins in individuals vaccinated with F. tularensis.
    Ericsson M; Golovliov I; Sandström G; Tärnvik A; Sjöstedt A
    Infect Immun; 1997 May; 65(5):1824-9. PubMed ID: 9125567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three disparately regulated genes for sigma 32-like transcription factors in Bradyrhizobium japonicum.
    Narberhaus F; Krummenacher P; Fischer HM; Hennecke H
    Mol Microbiol; 1997 Apr; 24(1):93-104. PubMed ID: 9140968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE.
    Roberts RC; Toochinda C; Avedissian M; Baldini RL; Gomes SL; Shapiro L
    J Bacteriol; 1996 Apr; 178(7):1829-41. PubMed ID: 8606155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE).
    Yuan G; Wong SL
    J Bacteriol; 1995 Oct; 177(19):5427-33. PubMed ID: 7559325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular analysis of the Rhodobacter capsulatus chaperonin (groESL) operon: purification and characterization of Cpn60.
    Hübner P; Dame G; Sandmeier U; Vandekerckhove J; Beyer P; Tadros MH
    Arch Microbiol; 1996 Sep; 166(3):193-203. PubMed ID: 8703196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters.
    Barreiro C; González-Lavado E; Pátek M; Martín JF
    J Bacteriol; 2004 Jul; 186(14):4813-7. PubMed ID: 15231814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One member of a gro-ESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes.
    Fischer HM; Babst M; Kaspar T; Acuña G; Arigoni F; Hennecke H
    EMBO J; 1993 Jul; 12(7):2901-12. PubMed ID: 8101485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the groESL operon is cell-cycle controlled in Caulobacter crescentus.
    Avedissian M; Lopes Gomes S
    Mol Microbiol; 1996 Jan; 19(1):79-89. PubMed ID: 8821938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative regulation of the heat shock response in Streptomyces.
    Servant P; Mazodier P
    Arch Microbiol; 2001 Oct; 176(4):237-42. PubMed ID: 11685367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dnaKJ operon of Agrobacterium tumefaciens: transcriptional analysis and evidence for a new heat shock promoter.
    Segal G; Ron EZ
    J Bacteriol; 1995 Oct; 177(20):5952-8. PubMed ID: 7592349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.