BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8820856)

  • 1. Cytochrome P450-dependent oxidation of fatty acids.
    Salaün JP; Helvig C
    Drug Metabol Drug Interact; 1995; 12(3-4):261-83. PubMed ID: 8820856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygenation of polyunsaturated fatty acids by cytochrome P450 monooxygenases.
    Oliw EH
    Prog Lipid Res; 1994; 33(3):329-54. PubMed ID: 8022846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae.
    Durairaj P; Malla S; Nadarajan SP; Lee PG; Jung E; Park HH; Kim BG; Yun H
    Microb Cell Fact; 2015 Apr; 14():45. PubMed ID: 25880760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different mechanisms of regioselection of fatty acid hydroxylation by laurate (omega-1)-hydroxylating P450s, P450 2C2 and P450 2E1.
    Fukuda T; Imai Y; Komori M; Nakamura M; Kusunose E; Satouchi K; Kusunose M
    J Biochem; 1994 Feb; 115(2):338-44. PubMed ID: 8206883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical Characterization of CYP505D6, a Self-Sufficient Cytochrome P450 from the White-Rot Fungus Phanerochaete chrysosporium.
    Sakai K; Matsuzaki F; Wise L; Sakai Y; Jindou S; Ichinose H; Takaya N; Kato M; Wariishi H; Shimizu M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30171007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of fatty acids by kidney microsomes of musk shrew (Suncus murinus).
    Miura Y; Oda S
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Jan; 119(1):107-12. PubMed ID: 9530812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acid discrimination and omega-hydroxylation by cytochrome P450 4A1 and a cytochrome P4504A1/NADPH-P450 reductase fusion protein.
    Alterman MA; Chaurasia CS; Lu P; Hardwick JP; Hanzlik RP
    Arch Biochem Biophys; 1995 Jul; 320(2):289-96. PubMed ID: 7625836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of CYP102A25 from Bacillus marmarensis and CYP102A26 from Pontibacillus halophilus: P450 Homologues of BM3 with Preference towards Hydroxylation of Medium-Chain Fatty Acids.
    Porter JL; Manning J; Sabatini S; Tavanti M; Turner NJ; Flitsch SL
    Chembiochem; 2018 Mar; 19(5):513-520. PubMed ID: 29219229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: substrate structure required for alpha-hydroxylation.
    Matsunaga I; Sumimoto T; Ueda A; Kusunose E; Ichihara K
    Lipids; 2000 Apr; 35(4):365-71. PubMed ID: 10858020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective ϖ-1 oxidation of fatty acids by CYP147G1 from Mycobacterium marinum.
    Child SA; Rossi VP; Bell SG
    Biochim Biophys Acta Gen Subj; 2019 Feb; 1863(2):408-417. PubMed ID: 30476524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CYP94A5, a new cytochrome P450 from Nicotiana tabacum is able to catalyze the oxidation of fatty acids to the omega-alcohol and to the corresponding diacid.
    Le Bouquin R; Skrabs M; Kahn R; Benveniste I; Salaün JP; Schreiber L; Durst F; Pinot F
    Eur J Biochem; 2001 May; 268(10):3083-90. PubMed ID: 11358528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Product Distributions of Cytochrome P450 OleT
    Lin YT; de Visser SP
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids.
    Cryle MJ; Matovic NJ; De Voss JJ
    Org Lett; 2003 Sep; 5(18):3341-4. PubMed ID: 12943422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism.
    Van Bogaert IN; Groeneboer S; Saerens K; Soetaert W
    FEBS J; 2011 Jan; 278(2):206-21. PubMed ID: 21156025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Stereoselective Oxidation of para-Substituted Benzenes by a Cytochrome P450 Biocatalyst.
    Chao RR; Lau IC; Coleman T; Churchman LR; Child SA; Lee JHZ; Bruning JB; De Voss JJ; Bell SG
    Chemistry; 2021 Oct; 27(59):14765-14777. PubMed ID: 34350662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interspecies variations in fatty acid hydroxylations involving cytochromes P450 2E1 and 4A.
    Adas F; Berthou F; Salaün JP; Dréano Y; Amet Y
    Toxicol Lett; 1999 Oct; 110(1-2):43-55. PubMed ID: 10593594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cytochrome P450 enzymes and microbial drug development - A review].
    Li Z; Zhang W; Li S
    Wei Sheng Wu Xue Bao; 2016 Mar; 56(3):496-515. PubMed ID: 27382792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvolvement of CYP2E1 in the (omega-1)-hydroxylation of fatty acids in rat kidney microsomes.
    Amet Y; Zerilli A; Goasduff T; Dréano Y; Berthou F
    Biochem Pharmacol; 1997 Oct; 54(8):947-52. PubMed ID: 9354595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome P450BM-3 (CYP102): regiospecificity of oxidation of omega-unsaturated fatty acids and mechanism-based inactivation.
    Shirane N; Sui Z; Peterson JA; Ortiz de Montellano PR
    Biochemistry; 1993 Dec; 32(49):13732-41. PubMed ID: 8257708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into oxidation of medium-chain fatty acids and flavanone by myxobacterial cytochrome P450 CYP267B1.
    Jóźwik IK; Litzenburger M; Khatri Y; Schifrin A; Girhard M; Urlacher V; Thunnissen AWH; Bernhardt R
    Biochem J; 2018 Sep; 475(17):2801-2817. PubMed ID: 30045877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.