These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 8820871)
1. Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Koutalos Y; Yau KW Trends Neurosci; 1996 Feb; 19(2):73-81. PubMed ID: 8820871 [TBL] [Abstract][Full Text] [Related]
2. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones. Korenbrot JI; Rebrik TI Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922 [TBL] [Abstract][Full Text] [Related]
3. Role of calcium ions in vertebrate phototransduction. Gorczyca WA Pol J Pharmacol; 1999; 51(2):167-72. PubMed ID: 10425646 [TBL] [Abstract][Full Text] [Related]
4. Rod and cone photoreceptors: molecular basis of the difference in their physiology. Kawamura S; Tachibanaki S Comp Biochem Physiol A Mol Integr Physiol; 2008 Aug; 150(4):369-77. PubMed ID: 18514002 [TBL] [Abstract][Full Text] [Related]
5. Light adaptation and the evolution of vertebrate photoreceptors. Morshedian A; Fain GL J Physiol; 2017 Jul; 595(14):4947-4960. PubMed ID: 28488783 [TBL] [Abstract][Full Text] [Related]
6. Ionic current model of the vertebrate rod photoreceptor. Kamiyama Y; Ogura T; Usui S Vision Res; 1996 Dec; 36(24):4059-68. PubMed ID: 9068858 [TBL] [Abstract][Full Text] [Related]
7. Calcium and the mechanism of light adaptation in vertebrate photoreceptors. Fain GL; Matthews HR Trends Neurosci; 1990 Sep; 13(9):378-84. PubMed ID: 1699328 [TBL] [Abstract][Full Text] [Related]
8. Phototransduction in mouse rods and cones. Fu Y; Yau KW Pflugers Arch; 2007 Aug; 454(5):805-19. PubMed ID: 17226052 [TBL] [Abstract][Full Text] [Related]
9. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Vinberg F; Chen J; Kefalov VJ Prog Retin Eye Res; 2018 Nov; 67():87-101. PubMed ID: 29883715 [TBL] [Abstract][Full Text] [Related]
10. Role of recoverin in rod photoreceptor light adaptation. Morshedian A; Woodruff ML; Fain GL J Physiol; 2018 Apr; 596(8):1513-1526. PubMed ID: 29435986 [TBL] [Abstract][Full Text] [Related]
11. Nonvisual photoreceptors of the deep brain, pineal organs and retina. Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759 [TBL] [Abstract][Full Text] [Related]
12. Calcium and light adaptation in retinal rods and cones. Nakatani K; Yau KW Nature; 1988 Jul; 334(6177):69-71. PubMed ID: 3386743 [TBL] [Abstract][Full Text] [Related]
13. Two temporal phases of light adaptation in retinal rods. Calvert PD; Govardovskii VI; Arshavsky VY; Makino CL J Gen Physiol; 2002 Feb; 119(2):129-45. PubMed ID: 11815664 [TBL] [Abstract][Full Text] [Related]
14. Calcium regulation of phototransduction in vertebrate rod outer segments. Rispoli G J Photochem Photobiol B; 1998 Jun; 44(1):1-20. PubMed ID: 9745724 [TBL] [Abstract][Full Text] [Related]
15. Toward a unified model of vertebrate rod phototransduction. Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700 [TBL] [Abstract][Full Text] [Related]
16. Vitamin A and Vision. Saari JC Subcell Biochem; 2016; 81():231-259. PubMed ID: 27830507 [TBL] [Abstract][Full Text] [Related]
18. Permeability and interaction of Ca2+ with cGMP-gated ion channels differ in retinal rod and cone photoreceptors. Picones A; Korenbrot JI Biophys J; 1995 Jul; 69(1):120-7. PubMed ID: 7545443 [TBL] [Abstract][Full Text] [Related]