These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8821784)
21. Syntrophic entanglements for propionate and acetate oxidation under thermophilic and high-ammonia conditions. Singh A; Schnürer A; Dolfing J; Westerholm M ISME J; 2023 Nov; 17(11):1966-1978. PubMed ID: 37679429 [TBL] [Abstract][Full Text] [Related]
22. Non-sulfate-reducing, syntrophic bacteria affiliated with desulfotomaculum cluster I are widely distributed in methanogenic environments. Imachi H; Sekiguchi Y; Kamagata Y; Loy A; Qiu YL; Hugenholtz P; Kimura N; Wagner M; Ohashi A; Harada H Appl Environ Microbiol; 2006 Mar; 72(3):2080-91. PubMed ID: 16517657 [TBL] [Abstract][Full Text] [Related]
23. Purification and characterization of fumarase from the syntrophic propionate-oxidizing bacterium strain MPOB. Van Kuijk BL; Van Loo ND; Arendsen AF; Hagen WR; Stams AJ Arch Microbiol; 1996 Feb; 165(2):126-31. PubMed ID: 8593099 [TBL] [Abstract][Full Text] [Related]
24. 13C-NMR study of propionate metabolism by sludges from bioreactors treating sulfate and sulfide rich wastewater. Lens PN; Dijkema C; Stams AJ Biodegradation; 1998; 9(3-4):179-86. PubMed ID: 10022062 [TBL] [Abstract][Full Text] [Related]
25. Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Scholten JC; Conrad R Appl Environ Microbiol; 2000 Jul; 66(7):2934-42. PubMed ID: 10877789 [TBL] [Abstract][Full Text] [Related]
26. Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester. Gallert C; Winter J Bioresour Technol; 2008 Jan; 99(1):170-8. PubMed ID: 17197176 [TBL] [Abstract][Full Text] [Related]
28. Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Lueders T; Pommerenke B; Friedrich MW Appl Environ Microbiol; 2004 Oct; 70(10):5778-86. PubMed ID: 15466514 [TBL] [Abstract][Full Text] [Related]
29. Long-term enrichment of anaerobic propionate-oxidizing consortia: Syntrophic culture development and growth optimization. Jannat MAH; Lee J; Shin SG; Hwang S J Hazard Mater; 2021 Jan; 401():123230. PubMed ID: 32650104 [TBL] [Abstract][Full Text] [Related]
30. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Kartal B; Rattray J; van Niftrik LA; van de Vossenberg J; Schmid MC; Webb RI; Schouten S; Fuerst JA; Damsté JS; Jetten MS; Strous M Syst Appl Microbiol; 2007 Jan; 30(1):39-49. PubMed ID: 16644170 [TBL] [Abstract][Full Text] [Related]
31. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Gibson GR; Cummings JH; Macfarlane GT Appl Environ Microbiol; 1988 Nov; 54(11):2750-5. PubMed ID: 3214155 [TBL] [Abstract][Full Text] [Related]
32. Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Oude Elferink SJ; Maas RN; Harmsen HJ; Stams AJ Arch Microbiol; 1995 Aug; 164(2):119-24. PubMed ID: 8588734 [TBL] [Abstract][Full Text] [Related]
33. Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer. Felchner-Zwirello M; Winter J; Gallert C Appl Microbiol Biotechnol; 2013 Oct; 97(20):9193-205. PubMed ID: 23233207 [TBL] [Abstract][Full Text] [Related]
34. Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. de Bok FA; Stams AJ; Dijkema C; Boone DR Appl Environ Microbiol; 2001 Apr; 67(4):1800-4. PubMed ID: 11282636 [TBL] [Abstract][Full Text] [Related]
35. Temperature effect on acetate and propionate consumption by sulfate-reducing bacteria in saline wastewater. van den Brand TP; Roest K; Brdjanovic D; Chen GH; van Loosdrecht MC Appl Microbiol Biotechnol; 2014 May; 98(9):4245-55. PubMed ID: 24463759 [TBL] [Abstract][Full Text] [Related]
36. High sulfate reduction efficiency in a UASB using an alternative source of sulfidogenic sludge derived from hydrothermal vent sediments. García-Solares SM; Ordaz A; Monroy-Hermosillo O; Jan-Roblero J; Guerrero-Barajas C Appl Biochem Biotechnol; 2014 Dec; 174(8):2919-40. PubMed ID: 25234397 [TBL] [Abstract][Full Text] [Related]
37. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Schink B; Thiemann V; Laue H; Friedrich MW Arch Microbiol; 2002 May; 177(5):381-91. PubMed ID: 11976747 [TBL] [Abstract][Full Text] [Related]
38. Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Dong X; Plugge CM; Stams AJ Appl Environ Microbiol; 1994 Aug; 60(8):2834-8. PubMed ID: 16349350 [TBL] [Abstract][Full Text] [Related]
40. Comparative proteome analysis of propionate degradation by Syntrophobacter fumaroxidans in pure culture and in coculture with methanogens. Sedano-Núñez VT; Boeren S; Stams AJM; Plugge CM Environ Microbiol; 2018 May; 20(5):1842-1856. PubMed ID: 29611893 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]