BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 8822347)

  • 1. Quantification of the collagenolytic activity of isolated osteoclasts by enzyme-linked immunosorbent assay.
    Foged NT; Delaissé JM; Hou P; Lou H; Sato T; Winding B; Bonde M
    J Bone Miner Res; 1996 Feb; 11(2):226-37. PubMed ID: 8822347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and characterization of a human in vitro resorption assay: demonstration of utility using novel antiresorptive agents.
    James IE; Lark MW; Zembryki D; Lee-Rykaczewski EV; Hwang SM; Tomaszek TA; Belfiore P; Gowen M
    J Bone Miner Res; 1999 Sep; 14(9):1562-9. PubMed ID: 10469285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula.
    Shorey S; Heersche JN; Manolson MF
    Bone; 2004 Oct; 35(4):909-17. PubMed ID: 15454098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin enhances osteoclastic bone resorption by inhibiting osteoprotegerin activity.
    Irie A; Takami M; Kubo H; Sekino-Suzuki N; Kasahara K; Sanai Y
    Bone; 2007 Aug; 41(2):165-74. PubMed ID: 17560185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation and enzymatic basis of bone resorption by human osteoclasts.
    Fuller K; Kirstein B; Chambers TJ
    Clin Sci (Lond); 2007 Jun; 112(11):567-75. PubMed ID: 17241109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human mesenchymal stem cell derived osteoblasts degrade organic bone matrix in vitro by matrix metalloproteinases.
    Parikka V; Väänänen A; Risteli J; Salo T; Sorsa T; Väänänen HK; Lehenkari P
    Matrix Biol; 2005 Sep; 24(6):438-47. PubMed ID: 16098718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases.
    Everts V; Delaissé JM; Korper W; Niehof A; Vaes G; Beertsen W
    J Cell Physiol; 1992 Feb; 150(2):221-31. PubMed ID: 1734028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A useful method to evaluate bone resorption inhibitors, using osteoclast-like multinucleated cells.
    Sugawara K; Hamada M; Hosoi S; Tamaoki T
    Anal Biochem; 1998 Jan; 255(2):204-10. PubMed ID: 9451505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of in vitro bone resorption: high-performance liquid chromatography measurement of the pyridinolines released in osteoclast cultures.
    Lorget F; Mentaverri R; Meddah B; Cayrolle G; Wattel A; Morel A; Schecroun N; Maamer M; de Vernejoul MC; Kamel S; Brazier M
    Anal Biochem; 2000 Sep; 284(2):375-81. PubMed ID: 10964422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of L-threonate on bone resorption by osteoclasts in vitro].
    He JH; Tong NW; Li HQ; Wu J
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2005 Mar; 36(2):225-8. PubMed ID: 15807273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of collagenolytic protease secretion through c-Src in osteoclasts.
    Furuyama N; Fujisawa Y
    Biochem Biophys Res Commun; 2000 May; 272(1):116-24. PubMed ID: 10872813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystatin B as an intracellular modulator of bone resorption.
    Laitala-Leinonen T; Rinne R; Saukko P; Väänänen HK; Rinne A
    Matrix Biol; 2006 Apr; 25(3):149-57. PubMed ID: 16321512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steering the osteoclast through the demineralization-collagenolysis balance.
    Søe K; Merrild DM; Delaissé JM
    Bone; 2013 Sep; 56(1):191-8. PubMed ID: 23777960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone resorption by isolated osteoclasts in living versus devitalized bone: differences in mode and extent and the effects of human recombinant tissue inhibitor of metalloproteinases.
    Shimizu H; Sakamoto M; Sakamoto S
    J Bone Miner Res; 1990 Apr; 5(4):411-8. PubMed ID: 2343781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of medium pH on osteoclast activity and osteoclast formation in cultures of dispersed rabbit osteoclasts.
    Shibutani T; Heersche JN
    J Bone Miner Res; 1993 Mar; 8(3):331-6. PubMed ID: 7681246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostaglandin E2 stimulates osteoclast-like cell formation and bone-resorbing activity via osteoblasts: role of cAMP-dependent protein kinase.
    Kaji H; Sugimoto T; Kanatani M; Fukase M; Kumegawa M; Chihara K
    J Bone Miner Res; 1996 Jan; 11(1):62-71. PubMed ID: 8770698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of aged osteocalcin fragments derived from bone resorption.
    Cloos PA; Christgau S
    Clin Lab; 2004; 50(9-10):585-98. PubMed ID: 15481635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of wortmannin analogs on bone in vitro and in vivo.
    Sato M; Bryant HU; Dodge JA; Davis H; Matter WF; Vlahos CJ
    J Pharmacol Exp Ther; 1996 Apr; 277(1):543-50. PubMed ID: 8613966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of angiogenin as the osteoclastic bone resorption-inhibitory factor in bovine milk.
    Morita Y; Matsuyama H; Serizawa A; Takeya T; Kawakami H
    Bone; 2008 Feb; 42(2):380-7. PubMed ID: 18055286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro resorptive activity of isolated chick osteoclasts: effects of carbonic anhydrase inhibition.
    Hunter SJ; Rosen CJ; Gay CV
    J Bone Miner Res; 1991 Jan; 6(1):61-6. PubMed ID: 2048433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.