These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1232 related articles for article (PubMed ID: 8822545)
1. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition. Lin Q; Peng YB; Willis WD J Neurophysiol; 1996 Jan; 75(1):109-23. PubMed ID: 8822545 [TBL] [Abstract][Full Text] [Related]
2. Glycine and GABAA antagonists reduce the inhibition of primate spinothalamic tract neurons produced by stimulation in periaqueductal gray. Lin Q; Peng Y; Willis WD Brain Res; 1994 Aug; 654(2):286-302. PubMed ID: 7987678 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is reduced during central sensitization. Lin Q; Peng YB; Willis WD J Neurophysiol; 1996 Aug; 76(2):1005-14. PubMed ID: 8871215 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is modulated by guanosine 3',5'-cyclic monophosphate. Lin Q; Wu J; Peng YB; Cui M; Willis WD J Neurophysiol; 1999 Mar; 81(3):1095-103. PubMed ID: 10085336 [TBL] [Abstract][Full Text] [Related]
5. Nitric oxide-mediated spinal disinhibition contributes to the sensitization of primate spinothalamic tract neurons. Lin Q; Wu J; Peng YB; Cui M; Willis WD J Neurophysiol; 1999 Mar; 81(3):1086-94. PubMed ID: 10085335 [TBL] [Abstract][Full Text] [Related]
6. Neurokinin 1 and 2 antagonists attenuate the responses and NK1 antagonists prevent the sensitization of primate spinothalamic tract neurons after intradermal capsaicin. Dougherty PM; Palecek J; Palecková V; Willis WD J Neurophysiol; 1994 Oct; 72(4):1464-75. PubMed ID: 7823080 [TBL] [Abstract][Full Text] [Related]
7. Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons. Peng YB; Lin Q; Willis WD Brain Res; 1996 Oct; 736(1-2):189-201. PubMed ID: 8930324 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation. Gerhart KD; Yezierski RP; Wilcox TK; Willis WD J Neurophysiol; 1984 Mar; 51(3):450-66. PubMed ID: 6699675 [TBL] [Abstract][Full Text] [Related]
9. GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons. Obrietan K; van den Pol AN J Neurophysiol; 1998 Mar; 79(3):1360-70. PubMed ID: 9497417 [TBL] [Abstract][Full Text] [Related]
10. The effect of phorbol esters on the responses of primate spinothalamic neurons to mechanical and thermal stimuli. Palecek J; Palecková V; Dougherty PM; Willis WD J Neurophysiol; 1994 Feb; 71(2):529-37. PubMed ID: 8176422 [TBL] [Abstract][Full Text] [Related]
11. Spinal inhibitory effects of cardiopulmonary afferent inputs in monkeys: neuronal processing in high cervical segments. Chandler MJ; Zhang J; Qin C; Foreman RD J Neurophysiol; 2002 Mar; 87(3):1290-302. PubMed ID: 11877503 [TBL] [Abstract][Full Text] [Related]
12. The role of 5-HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. Peng YB; Lin Q; Willis WD J Pharmacol Exp Ther; 1996 Jan; 276(1):116-24. PubMed ID: 8558419 [TBL] [Abstract][Full Text] [Related]
13. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. Sivilotti L; Woolf CJ J Neurophysiol; 1994 Jul; 72(1):169-79. PubMed ID: 7965003 [TBL] [Abstract][Full Text] [Related]
14. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons. Budai D; Fields HL J Neurophysiol; 1998 Feb; 79(2):677-87. PubMed ID: 9463431 [TBL] [Abstract][Full Text] [Related]
15. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors. Tegnér J; Matsushima T; el Manira A; Grillner S J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187 [TBL] [Abstract][Full Text] [Related]
16. Inhibition in spinal cord of nociceptive information by electrical stimulation and morphine microinjection at identical sites in midbrain of the cat. Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M J Neurophysiol; 1984 Jan; 51(1):75-89. PubMed ID: 6693935 [TBL] [Abstract][Full Text] [Related]
17. GABA(A) and 5-HT(3) receptors are involved in dorsal root reflexes: possible role in periaqueductal gray descending inhibition. Peng YB; Wu J; Willis WD; Kenshalo DR J Neurophysiol; 2001 Jul; 86(1):49-58. PubMed ID: 11431487 [TBL] [Abstract][Full Text] [Related]
18. The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. II. Differential effects of GABAA and GABAB receptor antagonists on responses of VPM neurons. Lee SM; Friedberg MH; Ebner FF J Neurophysiol; 1994 May; 71(5):1716-26. PubMed ID: 8064344 [TBL] [Abstract][Full Text] [Related]
19. Possible role of protein kinase C in the sensitization of primate spinothalamic tract neurons. Lin Q; Peng YB; Willis WD J Neurosci; 1996 May; 16(9):3026-34. PubMed ID: 8622132 [TBL] [Abstract][Full Text] [Related]
20. Primary afferents evoke excitatory amino acid receptor-mediated EPSPs that are modulated by presynaptic GABAB receptors in lamprey. Christenson J; Grillner S J Neurophysiol; 1991 Dec; 66(6):2141-9. PubMed ID: 1687474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]