These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

853 related articles for article (PubMed ID: 8823178)

  • 1. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Agalakova NI; Ivanova TI
    Gen Physiol Biophys; 2008 Dec; 27(4):284-90. PubMed ID: 19202202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neonatal red blood cells: amiloride-insensitive Na+-H+ transport isoform would express Na+-Li+ exchange.
    Serrani RE; Mujica G; Gioia IA; Corchs JL
    Acta Physiol Pharmacol Bulg; 2000; 25(3-4):71-4. PubMed ID: 11688549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic differences in lithium-sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension.
    Canessa ML; Morgan K; Semplicini A
    J Cardiovasc Pharmacol; 1988; 12 Suppl 3():S92-8. PubMed ID: 2467112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+ transport by human placental brush border membranes: are there several mechanisms?
    Brunette MG; Leclerc ; Claveau D
    J Cell Physiol; 1996 Apr; 167(1):72-80. PubMed ID: 8698842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways.
    Gusev GP; Ivanova TI
    Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amiloride-insensitive Na+-H+ exchange: a candidate mediator of erythrocyte Na+-Li+ countertransport.
    Zerbini G; Maestroni A; Mangili R; Pozza G
    J Am Soc Nephrol; 1998 Dec; 9(12):2203-11. PubMed ID: 9848774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic properties of erythrocyte Na+-Li+ and Na+-H+ exchange in hypertensive patients.
    Semplicini A; Ceolotto G; Felice M; Reato S; Valle R; Gebbin A; Fontebasso A; Serena L; Pessina AC
    J Hypertens; 1995 Dec; 13(12 Pt 2):1566-70. PubMed ID: 8903610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes.
    Brugnara C; de Franceschi L
    J Cell Physiol; 1993 Feb; 154(2):271-80. PubMed ID: 8381125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-lithium exchange and sodium-proton exchange are mediated by the same transport system in sarcolemmal vesicles from bovine superior mesenteric artery.
    Kahn AM; Allen JC; Cragoe EJ; Shelat H
    Circ Res; 1989 Sep; 65(3):818-28. PubMed ID: 2548766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between Na(+) and Li(+) for unsealed and cytoskeleton-depleted human red blood cell membrane: a (23)Na multiple quantum filtered and (7)Li NMR relaxation study.
    Srinivasan C; Minadeo N; Toon J; Graham D; Mota de Freitas D; Geraldes CF
    J Magn Reson; 1999 Sep; 140(1):206-17. PubMed ID: 10479564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Na/H exchange mechanism in apical membrane vesicles of the retinal pigment epithelium.
    Zadunaisky JA; Kinne-Saffran E; Kinne R
    Invest Ophthalmol Vis Sci; 1989 Nov; 30(11):2332-40. PubMed ID: 2553638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport pathways for therapeutic concentrations of lithium in rat liver.
    Shahabi V; van Rossum GD
    J Membr Biol; 1999 Nov; 172(2):101-11. PubMed ID: 10556358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations of Na+-Li+ exchange activity with Na+ and Li+ binding and phospholipid composition in erythrocyte membranes of white hypertensive and normotensive individuals: a nuclear magnetic resonance investigation.
    Chi Y; Mota de Freitas D; Sikora M; Bansal VK
    Hypertension; 1996 Mar; 27(3 Pt 1):456-64. PubMed ID: 8698453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper modifies the activity of sodium-transporting systems in erythrocyte membrane in patients with essential hypertension.
    Kedzierska K; Bober J; Ciechanowski K; Gołembiewska E; Kwiatkowska E; Noceń I; Dołegowska B; Dutkiewicz G; Chlubek D
    Biol Trace Elem Res; 2005 Oct; 107(1):21-32. PubMed ID: 16170219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posttranslational effects of protein kinase C and insulin on red cell membrane phosphorylation and cation heteroexchange in hypertension.
    Semplicini A; Ceolotto G; Felice M; Bordin L; Monari A; Clari G; Pessina AC
    Blood Press Suppl; 1996; 1():55-8. PubMed ID: 9162439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulphydryl groups involved in Na+-Li+ exchange in human erythrocytes.
    Romano L; Sidoti A; De Luca G; Gugliotta T; Romano P; Scuteri A; Amato A
    Cell Biochem Funct; 2002 Jun; 20(2):99-102. PubMed ID: 11979504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+/Li+ exchange kinetic characterization. Red blood cells from normotensive individuals.
    Corchs JL; Taborda D; Mujica G; Serrani RE
    Acta Physiol Pharmacol Bulg; 2000; 25(3-4):75-9. PubMed ID: 11688550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An amiloride-sensitive, volume-dependent Na+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Sherstobitov AO
    Gen Physiol Biophys; 1996 Apr; 15(2):129-43. PubMed ID: 8899417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independence of dimethylamiloride-sensitive Li+ efflux pathways and Na+-Li+ countertransport in human erythrocytes.
    Zerbini G; Mangili R; Pozza G
    Biochim Biophys Acta; 1998 Apr; 1371(1):129-33. PubMed ID: 9565666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.