These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8823181)

  • 1. Structure and function in rhodopsin. Single cysteine substitution mutants in the cytoplasmic interhelical E-F loop region show position-specific effects in transducin activation.
    Yang K; Farrens DL; Hubbell WL; Khorana HG
    Biochemistry; 1996 Sep; 35(38):12464-9. PubMed ID: 8823181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure.
    Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent.
    Cai K; Itoh Y; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4877-82. PubMed ID: 11320237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Yang K; Farrens DL; Farahbakhsh ZT; Khorana HG; Hubbell WL
    Biochemistry; 1996 Sep; 35(38):12470-8. PubMed ID: 8823182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of the amino acids in the cytoplasmic loop connecting helices C and D in rhodopsin. Chemical reactivity in the dark state following single cysteine replacements.
    Ridge KD; Zhang C; Khorana HG
    Biochemistry; 1995 Jul; 34(27):8804-11. PubMed ID: 7612621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic amino acids at the cytoplasmic ends of helices 3 and 6 of rhodopsin conjointly modulate transducin activation.
    Bosch-Presegué L; Iarriccio L; Aguilà M; Toledo D; Ramon E; Cordomí A; Garriga P
    Arch Biochem Biophys; 2011 Feb; 506(2):142-9. PubMed ID: 21114958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of rhodopsin mutants that bind transducin but fail to induce GTP nucleotide uptake. Classification of mutant pigments by fluorescence, nucleotide release, and flash-induced light-scattering assays.
    Ernst OP; Hofmann KP; Sakmar TP
    J Biol Chem; 1995 May; 270(18):10580-6. PubMed ID: 7737995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palmitoylation of bovine opsin and its cysteine mutants in COS cells.
    Karnik SS; Ridge KD; Bhattacharya S; Khorana HG
    Proc Natl Acad Sci U S A; 1993 Jan; 90(1):40-4. PubMed ID: 8419942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6.
    Han M; Smith SO; Sakmar TP
    Biochemistry; 1998 Jun; 37(22):8253-61. PubMed ID: 9609722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin mutants discriminate sites important for the activation of rhodopsin kinase and Gt.
    Shi W; Osawa S; Dickerson CD; Weiss ER
    J Biol Chem; 1995 Feb; 270(5):2112-9. PubMed ID: 7836439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transducin-alpha C-terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells.
    Garcia PD; Onrust R; Bell SM; Sakmar TP; Bourne HR
    EMBO J; 1995 Sep; 14(18):4460-9. PubMed ID: 7556089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between cysteine pairs engineered in cytoplasmic loops 1, 3, and 4.
    Cai K; Klein-Seetharaman J; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12479-85. PubMed ID: 11601971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin.
    Franke RR; Sakmar TP; Graham RM; Khorana HG
    J Biol Chem; 1992 Jul; 267(21):14767-74. PubMed ID: 1634520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits.
    Ernst OP; Meyer CK; Marin EP; Henklein P; Fu WY; Sakmar TP; Hofmann KP
    J Biol Chem; 2000 Jan; 275(3):1937-43. PubMed ID: 10636895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the intradiscal domain in rhodopsin assembly and function.
    Doi T; Molday RS; Khorana HG
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):4991-5. PubMed ID: 2367520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state.
    Davidson FF; Loewen PC; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4029-33. PubMed ID: 8171030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops.
    Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG
    Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function.
    Hwa J; Reeves PJ; Klein-Seetharaman J; Davidson F; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1932-5. PubMed ID: 10051572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.