These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8823181)

  • 41. A single amino acid substitution in rhodopsin (lysine 248----leucine) prevents activation of transducin.
    Franke RR; Sakmar TP; Oprian DD; Khorana HG
    J Biol Chem; 1988 Feb; 263(5):2119-22. PubMed ID: 3123487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore.
    Zhukovsky EA; Robinson PR; Oprian DD
    Science; 1991 Feb; 251(4993):558-60. PubMed ID: 1990431
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rhodopsin-interacting surface of the transducin gamma subunit.
    Kisselev OG; Downs MA
    Biochemistry; 2006 Aug; 45(31):9386-92. PubMed ID: 16878973
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F.
    Sheikh SP; Zvyaga TA; Lichtarge O; Sakmar TP; Bourne HR
    Nature; 1996 Sep; 383(6598):347-50. PubMed ID: 8848049
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacteriorhodopsin chimeras containing the third cytoplasmic loop of bovine rhodopsin activate transducin for GTP/GDP exchange.
    Geiser AH; Sievert MK; Guo LW; Grant JE; Krebs MP; Fotiadis D; Engel A; Ruoho AE
    Protein Sci; 2006 Jul; 15(7):1679-90. PubMed ID: 16815918
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Depalmitoylation of rhodopsin with hydroxylamine.
    Pepperberg DR; Morrison DF; O'Brien PJ
    Methods Enzymol; 1995; 250():348-61. PubMed ID: 7651164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Altered functionality in rhodopsin point mutants associated with retinitis pigmentosa.
    Andrés A; Garriga P; Manyosa J
    Biochem Biophys Res Commun; 2003 Mar; 303(1):294-301. PubMed ID: 12646201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of rhodopsin congenital night blindness mutant T94I.
    Gross AK; Rao VR; Oprian DD
    Biochemistry; 2003 Feb; 42(7):2009-15. PubMed ID: 12590588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two-step mechanism of interaction of rhodopsin intermediates with the C-terminal region of the transducin alpha-subunit.
    Morizumi T; Imai H; Shichida Y
    J Biochem; 2003 Aug; 134(2):259-67. PubMed ID: 12966076
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conformations of the rhodopsin third cytoplasmic loop grafted onto bacteriorhodopsin.
    Heymann JB; Pfeiffer M; Hildebrandt V; Kaback HR; Fotiadis D; Groot B; Engel A; Oesterhelt D; Müller DJ
    Structure; 2000 Jun; 8(6):643-53. PubMed ID: 10873864
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin.
    Farrens DL; Altenbach C; Yang K; Hubbell WL; Khorana HG
    Science; 1996 Nov; 274(5288):768-70. PubMed ID: 8864113
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional interaction between bovine rhodopsin and G protein transducin.
    Terakita A; Yamashita T; Nimbari N; Kojima D; Shichida Y
    J Biol Chem; 2002 Jan; 277(1):40-6. PubMed ID: 11606568
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disulfide bond exchange in rhodopsin.
    Kono M; Yu H; Oprian DD
    Biochemistry; 1998 Feb; 37(5):1302-5. PubMed ID: 9477956
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The roles of transmembrane domain helix-III during rhodopsin photoactivation.
    Ou WB; Yi T; Kim JM; Khorana HG
    PLoS One; 2011 Feb; 6(2):e17398. PubMed ID: 21364764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study.
    Zvyaga TA; Fahmy K; Siebert F; Sakmar TP
    Biochemistry; 1996 Jun; 35(23):7536-45. PubMed ID: 8652533
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure and function in rhodopsin: the role of asparagine-linked glycosylation.
    Kaushal S; Ridge KD; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4024-8. PubMed ID: 8171029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and function in rhodopsin: kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serve as probes of the retinal binding pocket.
    Reeves PJ; Hwa J; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1927-31. PubMed ID: 10051571
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutations at position 125 in transmembrane helix III of rhodopsin affect the structure and signalling of the receptor.
    Andrés A; Kosoy A; Garriga P; Manyosa J
    Eur J Biochem; 2001 Nov; 268(22):5696-704. PubMed ID: 11722553
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of amino acid replacements of glycine 121 on transmembrane helix 3 of rhodopsin.
    Han M; Lin SW; Smith SO; Sakmar TP
    J Biol Chem; 1996 Dec; 271(50):32330-6. PubMed ID: 8943295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.