BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 8823185)

  • 1. Alpha-helix dipoles and catalysis: absorption and Raman spectroscopic studies of acyl cysteine proteases.
    Doran JD; Carey PR
    Biochemistry; 1996 Sep; 35(38):12495-502. PubMed ID: 8823185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric fields in active sites: substrate switching from null to strong fields in thiol- and selenol-subtilisins.
    Dinakarpandian D; Shenoy BC; Hilvert D; McRee DE; McTigue M; Carey PR
    Biochemistry; 1999 May; 38(20):6659-67. PubMed ID: 10350485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active site properties of the 3C proteinase from hepatitis A virus (a hybrid cysteine/serine protease) probed by Raman spectroscopy.
    Dinakarpandian D; Shenoy B; Pusztai-Carey M; Malcolm BA; Carey PR
    Biochemistry; 1997 Apr; 36(16):4943-8. PubMed ID: 9125516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deacylation and reacylation for a series of acyl cysteine proteases, including acyl groups derived from novel chromophoric substrates.
    Doran JD; Tonge PJ; Mort JS; Carey PR
    Biochemistry; 1996 Sep; 35(38):12487-94. PubMed ID: 8823184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman study of the polarizing forces promoting catalysis in 4-chlorobenzoate-CoA dehalogenase.
    Clarkson J; Tonge PJ; Taylor KL; Dunaway-Mariano D; Carey PR
    Biochemistry; 1997 Aug; 36(33):10192-9. PubMed ID: 9254617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR
    Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis.
    Whiting AK; Peticolas WL
    Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular structure of 5-methyl thiophene acryloyl ethyl thiolester: a vibrational spectroscopic and density functional theory study.
    Dinakarpandian D; Carey PR
    Biospectroscopy; 1999; 5(4):201-18. PubMed ID: 10478951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Length of the acyl carbonyl bond in acyl-serine proteases correlates with reactivity.
    Tonge PJ; Carey PR
    Biochemistry; 1990 Dec; 29(48):10723-7. PubMed ID: 2271679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy.
    Wu J; Bell AF; Luo L; Stephens AW; Stankovich MT; Tonge PJ
    Biochemistry; 2003 Oct; 42(40):11846-56. PubMed ID: 14529297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in the pH-dependent pre-steady-state and steady-state kinetic characteristics of cysteine-proteinase mechanism: evidence for electrostatic modulation of catalytic-site function by the neighbouring carboxylate anion.
    Hussain S; Pinitglang S; Bailey TS; Reid JD; Noble MA; Resmini M; Thomas EW; Greaves RB; Verma CS; Brocklehurst K
    Biochem J; 2003 Jun; 372(Pt 3):735-46. PubMed ID: 12643810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of substrate activation by 4-chlorobenzoyl-coenzyme A dehalogenase.
    Taylor KL; Xiang H; Liu RQ; Yang G; Dunaway-Mariano D
    Biochemistry; 1997 Feb; 36(6):1349-61. PubMed ID: 9063883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Procatalytic ligand strain. Ionization and perturbation of 8-nitroxanthine at the urate oxidase active site.
    Doll C; Bell AF; Power N; Tonge PJ; Tipton PA
    Biochemistry; 2005 Aug; 44(34):11440-6. PubMed ID: 16114880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling of substrate-enzyme reactions for the cysteine protease papain.
    Lin Y; Welsh WJ
    J Mol Graph; 1996 Apr; 14(2):62-72, 92-3. PubMed ID: 8835773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into the substrate specificity and activity of ervatamins, the papain-like cysteine proteases from a tropical plant, Ervatamia coronaria.
    Ghosh R; Chakraborty S; Chakrabarti C; Dattagupta JK; Biswas S
    FEBS J; 2008 Feb; 275(3):421-34. PubMed ID: 18167146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes.
    Chattopadhyay A; Meier M; Ivaninskii S; Burkhard P; Speroni F; Campanini B; Bettati S; Mozzarelli A; Rabeh WM; Li L; Cook PF
    Biochemistry; 2007 Jul; 46(28):8315-30. PubMed ID: 17583914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ICE processing and kinetic mechanism.
    Giegel DA
    J Cell Biochem; 1997 Jan; 64(1):11-8. PubMed ID: 9015749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the mature Streptococcal cysteine protease exotoxin mSpeB in its active dimeric form.
    Olsen JG; Dagil R; Niclasen LM; Sørensen OE; Kragelund BB
    J Mol Biol; 2009 Oct; 393(3):693-703. PubMed ID: 19712682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-site mutation and secondary structure stability: an isodesmic reaction approach. The case of unnatural amino acid mutagenesis Ala-->Lac.
    Cieplak AS; Sürmeli NB
    J Org Chem; 2004 May; 69(10):3250-61. PubMed ID: 15132529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.