These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 8823197)
1. Transmembrane region of the epidermal growth factor receptor: behavior and interactions via 2H NMR. Rigby AC; Barber KR; Shaw GS; Grant CW Biochemistry; 1996 Sep; 35(38):12591-601. PubMed ID: 8823197 [TBL] [Abstract][Full Text] [Related]
2. Oligomerization of the EGF receptor transmembrane domain: a 2H NMR study in lipid bilayers. Jones DH; Rigby AC; Barber KR; Grant CW Biochemistry; 1997 Oct; 36(41):12616-24. PubMed ID: 9376368 [TBL] [Abstract][Full Text] [Related]
3. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Jones DH; Barber KR; VanDerLoo EW; Grant CW Biochemistry; 1998 Nov; 37(47):16780-7. PubMed ID: 9843449 [TBL] [Abstract][Full Text] [Related]
4. The EGF receptor transmembrane domain: 2H NMR study of peptide phosphorylation effects in a bilayer environment. Jones DH; Barber KR; Grant CW Biochemistry; 1998 May; 37(20):7504-8. PubMed ID: 9585564 [TBL] [Abstract][Full Text] [Related]
5. Sequence-related behaviour of transmembrane domains from class I receptor tyrosine kinases. Jones DH; Barber KR; Grant CW Biochim Biophys Acta; 1998 May; 1371(2):199-212. PubMed ID: 9630629 [TBL] [Abstract][Full Text] [Related]
6. Globoside as a membrane receptor: a consideration of oligosaccharide communication with the hydrophobic domain. Jones DH; Lingwood CA; Barber KR; Grant CW Biochemistry; 1997 Jul; 36(28):8539-47. PubMed ID: 9214299 [TBL] [Abstract][Full Text] [Related]
7. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
8. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation. Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194 [TBL] [Abstract][Full Text] [Related]
9. The EGF receptor transmembrane domain: peptide-peptide interactions in fluid bilayer membranes. Morrow MR; Grant CW Biophys J; 2000 Oct; 79(4):2024-32. PubMed ID: 11023906 [TBL] [Abstract][Full Text] [Related]
10. Investigating the dynamic properties of the transmembrane segment of phospholamban incorporated into phospholipid bilayers utilizing 2H and 15N solid-state NMR spectroscopy. Tiburu EK; Karp ES; Dave PC; Damodaran K; Lorigan GA Biochemistry; 2004 Nov; 43(44):13899-909. PubMed ID: 15518538 [TBL] [Abstract][Full Text] [Related]
11. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies. Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365 [TBL] [Abstract][Full Text] [Related]
12. Peptide-related alterations of membrane-associated water: deuterium solid-state NMR investigations of phosphatidylcholine membranes at different hydration levels. Moraes CM; Bechinger B Magn Reson Chem; 2004 Feb; 42(2):155-61. PubMed ID: 14745795 [TBL] [Abstract][Full Text] [Related]
13. Investigations of polypeptide rotational diffusion in aligned membranes by 2H and 15N solid-state NMR spectroscopy. Aisenbrey C; Bechinger B J Am Chem Soc; 2004 Dec; 126(50):16676-83. PubMed ID: 15600374 [TBL] [Abstract][Full Text] [Related]
14. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces. Clayton JC; Hughes E; Middleton DA Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815 [TBL] [Abstract][Full Text] [Related]
15. A 2H solid-state NMR spectroscopic investigation of biomimetic bicelles containing cholesterol and polyunsaturated phosphatidylcholine. Minto RE; Adhikari PR; Lorigan GA Chem Phys Lipids; 2004 Nov; 132(1):55-64. PubMed ID: 15530448 [TBL] [Abstract][Full Text] [Related]
16. The effects of cholesterol on magnetically aligned phospholipid bilayers: a solid-state NMR and EPR spectroscopy study. Lu JX; Caporini MA; Lorigan GA J Magn Reson; 2004 May; 168(1):18-30. PubMed ID: 15082245 [TBL] [Abstract][Full Text] [Related]
17. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
18. 31P and 2H relaxation studies of helix VII and the cytoplasmic helix of the human cannabinoid receptors utilizing solid-state NMR techniques. Tiburu EK; Karp ES; Birrane G; Struppe JO; Chu S; Lorigan GA; Avraham S; Avraham HK Biochemistry; 2006 Jun; 45(23):7356-65. PubMed ID: 16752925 [TBL] [Abstract][Full Text] [Related]
19. Minor influence of sialic acid on conformation of a membrane-bound oligosaccharide recognition site. Jones DH; Barber KR; Grant CW Biochemistry; 1996 Apr; 35(15):4803-11. PubMed ID: 8664270 [TBL] [Abstract][Full Text] [Related]
20. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study. Ouellet M; Doucet JD; Voyer N; Auger M Biochemistry; 2007 Jun; 46(22):6597-606. PubMed ID: 17487978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]