These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 8823677)

  • 1. An electronic device to measure drive and recovery phases during wheelchair propulsion: a technical note.
    Wang YT; Beale D; Moeizadeh M
    J Rehabil Res Dev; 1996 Jul; 33(3):305-10. PubMed ID: 8823677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intra-push velocity profile of the over-ground racing wheelchair sprint start.
    Moss AD; Fowler NE; Goosey-Tolfrey VL
    J Biomech; 2005 Jan; 38(1):15-22. PubMed ID: 15519335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMARTWheels: development and testing of a system for measuring manual wheelchair propulsion dynamics.
    Asato KT; Cooper RA; Robertson RN; Ster JF
    IEEE Trans Biomed Eng; 1993 Dec; 40(12):1320-4. PubMed ID: 8125507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symmetry of the elbow kinematics during racing wheelchair propulsion.
    Goosey VL; Campbell IG
    Ergonomics; 1998 Dec; 41(12):1810-20. PubMed ID: 9857839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface electromyography activity of trunk muscles during wheelchair propulsion.
    Yang YS; Koontz AM; Triolo RJ; Mercer JL; Boninger ML
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1032-41. PubMed ID: 16979271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Racing wheelchair rear wheel alignment.
    Cooper RA
    J Rehabil Res Dev; 1989; 26(1):47-50. PubMed ID: 2918487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia.
    Lighthall-Haubert L; Requejo PS; Mulroy SJ; Newsam CJ; Bontrager E; Gronley JK; Perry J
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of caster diameter on the static and dynamic forward stability of occupied wheelchairs.
    Kirby RL; McLean AD; Eastwood BJ
    Arch Phys Med Rehabil; 1992 Jan; 73(1):73-7. PubMed ID: 1729979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact.
    Kwarciak AM; Sisto SA; Yarossi M; Price R; Komaroff E; Boninger ML
    Arch Phys Med Rehabil; 2009 Jan; 90(1):20-6. PubMed ID: 19154825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 2-speed geared manual wheelchair propulsion on shoulder pain and function.
    Finley MA; Rodgers MM
    Arch Phys Med Rehabil; 2007 Dec; 88(12):1622-7. PubMed ID: 18047877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic analysis of the 100-m wheelchair race.
    Chow JW; Chae WS
    J Biomech; 2007; 40(11):2564-8. PubMed ID: 17270191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of methods to compute the point of force application in handrim wheelchair propulsion: a technical note.
    Sabick MB; Zhao KD; An KN
    J Rehabil Res Dev; 2001; 38(1):57-68. PubMed ID: 11322471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degree of coordination between breathing and rhythmic arm movements during hand rim wheelchair propulsion.
    Fabre N; Perrey S; Arbez L; Ruiz J; Tordi N; Rouillon JD
    Int J Sports Med; 2006 Jan; 27(1):67-74. PubMed ID: 16388445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional kinematics of the shoulder complex during wheelchair propulsion: a technical report.
    Davis JL; Growney ES; Johnson ME; Iuliano BA; An KN
    J Rehabil Res Dev; 1998 Jan; 35(1):61-72. PubMed ID: 9505254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high sample rate, wireless instrumented wheel for measuring 3D pushrim kinetics of a racing wheelchair.
    Chénier F; Pelland-Leblanc JP; Parrinello A; Marquis E; Rancourt D
    Med Eng Phys; 2021 Jan; 87():30-37. PubMed ID: 33461671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wheelchair racing sports science: a review.
    Cooper RA
    J Rehabil Res Dev; 1990; 27(3):295-312. PubMed ID: 2205719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.