These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8824149)

  • 1. Differential profiles of soluble proteins during the initiation of morphogenesis in Candida albicans.
    Niimi M; Shepherd MG; Monk BC
    Arch Microbiol; 1996 Oct; 166(4):260-8. PubMed ID: 8824149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.
    Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG
    Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of cytoplasmic proteins during yeast bud and germ tube formation in Candida albicans.
    Brown LA; Chaffin WL
    Can J Microbiol; 1981 Jun; 27(6):580-5. PubMed ID: 7020895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline-induced germ-tube formation in Candida albicans: role of proline uptake and nitrogen metabolism.
    Holmes AR; Shepherd MG
    J Gen Microbiol; 1987 Nov; 133(11):3219-28. PubMed ID: 3328774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The requirements for bicarbonate and metabolism of the inducer during germ tube formation by Candida albicans.
    Pollack JH; Hashimoto T
    Can J Microbiol; 1988 Nov; 34(11):1183-8. PubMed ID: 2850098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis of Candida albicans.
    Paranjape V; Roy BG; Datta A
    J Gen Microbiol; 1990 Nov; 136(11):2149-54. PubMed ID: 2079619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of N-acetyl-D-glucosamine catabolic enzymes and germinative response in Candida albicans.
    Natarajan K; Rai YP; Datta A
    Biochem Int; 1984 Dec; 9(6):735-44. PubMed ID: 6395867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium and the regulation of germ-tube formation in Candida albicans.
    Walker GM; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1984 Aug; 130(8):1941-5. PubMed ID: 6432954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Hyphal Growth and N-Acetylglucosamine Catabolism by Two Transcription Factors in
    Naseem S; Min K; Spitzer D; Gardin J; Konopka JB
    Genetics; 2017 May; 206(1):299-314. PubMed ID: 28348062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The programs of protein synthesis accompanying the establishment of alternative phenotypes in Candida albicans.
    Finney R; Langtimm CJ; Soll DR
    Mycopathologia; 1985 Jul; 91(1):3-15. PubMed ID: 3900731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures involved in the binding of human fibrinogen to Candida albicans germ tubes.
    Annaix V; Bouchara JP; Tronchin G; Senet JM; Robert R
    FEMS Microbiol Immunol; 1990 Oct; 2(3):147-53. PubMed ID: 2257170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and purification of the chorionic gonadotropin-like protein binding site in Candida albicans.
    Caticha O; Odell WD
    Endocr Res; 1994 Feb; 20(1):1-19. PubMed ID: 8168460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutritional stress proteins in Candida albicans.
    Dabrowa N; Zeuthen ML; Howard DH
    J Gen Microbiol; 1990 Jul; 136(7):1387-91. PubMed ID: 2230722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential protein synthesis in Candida albicans during blastospore formation at 24.5 degrees C and during germ tube formation at 37 degrees C.
    Ahrens JC; Daneo-Moore L; Buckley HR
    J Gen Microbiol; 1983 Apr; 129(4):1133-9. PubMed ID: 6350533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-related expression of the vacuolar aspartic proteinase (APR1) gene and beta-N-acetylglucosaminidase (HEX1) gene during Candida albicans morphogenesis.
    Niimi M; Niimi K; Cannon RD
    FEMS Microbiol Lett; 1997 Mar; 148(2):247-54. PubMed ID: 9084153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient-limited yeast growth in Candida albicans: effect on yeast-mycelial transition.
    Bell WM; Chaffin WL
    Can J Microbiol; 1980 Jan; 26(1):102-5. PubMed ID: 6996797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH, carbon source and K+ on the Na+-inhibited germ tube formation of Candida albicans.
    Biswas SK; Yokoyama K; Nishimura K; Miyaji M
    Med Mycol; 2000 Oct; 38(5):363-9. PubMed ID: 11092383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolic basis of Candida albicans morphogenesis and quorum sensing.
    Han TL; Cannon RD; Villas-Bôas SG
    Fungal Genet Biol; 2011 Aug; 48(8):747-63. PubMed ID: 21513811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of aggregation accompanying morphogenesis in Candida albicans.
    Holmes AR; Cannon RD; Shepherd MG
    Oral Microbiol Immunol; 1992 Feb; 7(1):32-7. PubMed ID: 1528622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.