These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 8824211)
1. A putative DNA binding surface in the globular domain of a linker histone is not essential for specific binding to the nucleosome. Hayes JJ; Kaplan R; Ura K; Pruss D; Wolffe A J Biol Chem; 1996 Oct; 271(42):25817-22. PubMed ID: 8824211 [TBL] [Abstract][Full Text] [Related]
2. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes. Duggan MM; Thomas JO J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807 [TBL] [Abstract][Full Text] [Related]
3. Site-directed mutagenesis studies on the binding of the globular domain of linker histone H5 to the nucleosome. Buckle RS; Maman JD; Allan J J Mol Biol; 1992 Feb; 223(3):651-9. PubMed ID: 1542112 [TBL] [Abstract][Full Text] [Related]
4. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1. Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873 [TBL] [Abstract][Full Text] [Related]
5. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo. Brown DT; Izard T; Misteli T Nat Struct Mol Biol; 2006 Mar; 13(3):250-5. PubMed ID: 16462749 [TBL] [Abstract][Full Text] [Related]
6. HMGN1 and 2 remodel core and linker histone tail domains within chromatin. Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435 [TBL] [Abstract][Full Text] [Related]
7. Nucleosome interaction surface of linker histone H1c is distinct from that of H1(0). George EM; Izard T; Anderson SD; Brown DT J Biol Chem; 2010 Jul; 285(27):20891-6. PubMed ID: 20444700 [TBL] [Abstract][Full Text] [Related]
8. Transcription of dinucleosomal templates. Wolffe AP; Ura K Methods; 1997 May; 12(1):10-9. PubMed ID: 9169190 [TBL] [Abstract][Full Text] [Related]
9. MNase Digestion Protection Patterns of the Linker DNA in Chromatosomes. Shen CH; Allan J Cells; 2021 Aug; 10(9):. PubMed ID: 34571888 [TBL] [Abstract][Full Text] [Related]
10. Site-directed cleavage of DNA by a linker histone--Fe(II) EDTA conjugate: localization of a globular domain binding site within a nucleosome. Hayes JJ Biochemistry; 1996 Sep; 35(37):11931-7. PubMed ID: 8810896 [TBL] [Abstract][Full Text] [Related]
11. Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Hayes JJ; Wolffe AP Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6415-9. PubMed ID: 8341648 [TBL] [Abstract][Full Text] [Related]
12. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain. Caterino TL; Fang H; Hayes JJ Mol Cell Biol; 2011 Jun; 31(11):2341-8. PubMed ID: 21464206 [TBL] [Abstract][Full Text] [Related]
13. Complex of linker histone H5 with the nucleosome and its implications for chromatin packing. Fan L; Roberts VA Proc Natl Acad Sci U S A; 2006 May; 103(22):8384-9. PubMed ID: 16717183 [TBL] [Abstract][Full Text] [Related]
14. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1. Kermekchiev M; Workman JL; Pikaard CS Mol Cell Biol; 1997 Oct; 17(10):5833-42. PubMed ID: 9315641 [TBL] [Abstract][Full Text] [Related]
15. Linker DNA and H1-dependent reorganization of histone-DNA interactions within the nucleosome. Lee KM; Hayes JJ Biochemistry; 1998 Jun; 37(24):8622-8. PubMed ID: 9628723 [TBL] [Abstract][Full Text] [Related]
16. Novel nucleosomal particles containing core histones and linker DNA but no histone H1. Cole HA; Cui F; Ocampo J; Burke TL; Nikitina T; Nagarajavel V; Kotomura N; Zhurkin VB; Clark DJ Nucleic Acids Res; 2016 Jan; 44(2):573-81. PubMed ID: 26400169 [TBL] [Abstract][Full Text] [Related]
17. A Small Number of Residues Can Determine if Linker Histones Are Bound On or Off Dyad in the Chromatosome. Zhou BR; Feng H; Ghirlando R; Li S; Schwieters CD; Bai Y J Mol Biol; 2016 Oct; 428(20):3948-3959. PubMed ID: 27558112 [TBL] [Abstract][Full Text] [Related]
18. Position and orientation of the globular domain of linker histone H5 on the nucleosome. Zhou YB; Gerchman SE; Ramakrishnan V; Travers A; Muyldermans S Nature; 1998 Sep; 395(6700):402-5. PubMed ID: 9759733 [TBL] [Abstract][Full Text] [Related]
19. A quantitative investigation of linker histone interactions with nucleosomes and chromatin. White AE; Hieb AR; Luger K Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377 [TBL] [Abstract][Full Text] [Related]
20. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure. Hao F; Mishra LN; Jaya P; Jones R; Hayes JJ Mol Cell Proteomics; 2022 Jul; 21(7):100250. PubMed ID: 35618225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]