These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 8824250)
1. Circular ribozymes generated in Escherichia coli using group I self-splicing permuted intron-exon sequences. Puttaraju M; Been MD J Biol Chem; 1996 Oct; 271(42):26081-7. PubMed ID: 8824250 [TBL] [Abstract][Full Text] [Related]
2. Circularizing ribozymes and decoy-competitors by autocatalytic splicing in vitro and in vivo. Puttaraju M; Been MD SAAS Bull Biochem Biotechnol; 1996; 9():77-82. PubMed ID: 8652136 [TBL] [Abstract][Full Text] [Related]
3. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Puttaraju M; Been MD Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519 [TBL] [Abstract][Full Text] [Related]
4. A circular trans-acting hepatitis delta virus ribozyme. Puttaraju M; Perrotta AT; Been MD Nucleic Acids Res; 1993 Sep; 21(18):4253-8. PubMed ID: 7692400 [TBL] [Abstract][Full Text] [Related]
5. Trans-splicing with the group I intron ribozyme from Azoarcus. Dolan GF; Müller UF RNA; 2014 Feb; 20(2):202-13. PubMed ID: 24344321 [TBL] [Abstract][Full Text] [Related]
6. An in vivo selection method to optimize trans-splicing ribozymes. Olson KE; Müller UF RNA; 2012 Mar; 18(3):581-9. PubMed ID: 22274958 [TBL] [Abstract][Full Text] [Related]
7. Selection of circularly permuted ribozymes from Bacillus subtilis RNAse P by substrate binding. Pan T; Zhong K Biochemistry; 1994 Nov; 33(47):14207-12. PubMed ID: 7524672 [TBL] [Abstract][Full Text] [Related]
8. RNase P RNA of Mycoplasma capricolum. Ushida C; Izawa D; Muto A Mol Biol Rep; 1995-1996; 22(2-3):125-9. PubMed ID: 8901498 [TBL] [Abstract][Full Text] [Related]
9. Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes. Müller UF Molecules; 2017 Jan; 22(1):. PubMed ID: 28045452 [TBL] [Abstract][Full Text] [Related]
10. In vitro transactivation of Bacillus subtilis RNase P RNA. Kim H; Poelling RR; Leeper TC; Meyer MA; Schmidt FJ FEBS Lett; 2001 Oct; 506(3):235-8. PubMed ID: 11602252 [TBL] [Abstract][Full Text] [Related]
11. Acquisition of novel catalytic activity by the M1 RNA ribozyme: the cost of molecular adaptation. Cole KB; Dorit RL J Mol Biol; 1999 Oct; 292(4):931-44. PubMed ID: 10525416 [TBL] [Abstract][Full Text] [Related]
12. Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking. Christian EL; McPheeters DS; Harris ME Biochemistry; 1998 Dec; 37(50):17618-28. PubMed ID: 9860878 [TBL] [Abstract][Full Text] [Related]
13. Group I intron ribozymes. Nielsen H Methods Mol Biol; 2012; 848():73-89. PubMed ID: 22315064 [TBL] [Abstract][Full Text] [Related]
14. Generation and characterization of circular Bacillus subtilis RNase P RNA; activation by RNase P protein. Puttaraju M; Beebe JA; Niranjanakumari S; Been MD; Fierke CA Nucleic Acids Symp Ser; 1995; (33):92-4. PubMed ID: 8643411 [TBL] [Abstract][Full Text] [Related]
15. The Ribonuclease P database. Brown JW; Haas ES; Gilbert DG; Pace NR Nucleic Acids Res; 1994 Sep; 22(17):3660-2. PubMed ID: 7524025 [TBL] [Abstract][Full Text] [Related]
16. Interaction of the 3'-end of tRNA with ribonuclease P RNA. Oh BK; Pace NR Nucleic Acids Res; 1994 Oct; 22(20):4087-94. PubMed ID: 7524035 [TBL] [Abstract][Full Text] [Related]
17. Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme. Siew D; Zahler NH; Cassano AG; Strobel SA; Harris ME Biochemistry; 1999 Feb; 38(6):1873-83. PubMed ID: 10026268 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the tertiary structure of the ribonuclease P ribozyme-substrate complex by site-specific photoaffinity crosslinking. Harris ME; Kazantsev AV; Chen JL; Pace NR RNA; 1997 Jun; 3(6):561-76. PubMed ID: 9174092 [TBL] [Abstract][Full Text] [Related]
19. Pathway modulation, circular permutation and rapid RNA folding under kinetic control. Pan T; Fang X; Sosnick T J Mol Biol; 1999 Feb; 286(3):721-31. PubMed ID: 10024446 [TBL] [Abstract][Full Text] [Related]
20. Engineered RNase P ribozymes inhibit gene expression and growth of cytomegalovirus by increasing rate of cleavage and substrate binding. Trang P; Hsu A; Zhou T; Lee J; Kilani AF; Nepomuceno E; Liu F J Mol Biol; 2002 Jan; 315(4):573-86. PubMed ID: 11812131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]