BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 8825233)

  • 1. Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data.
    Gadaleta SJ; Paschalis EP; Betts F; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 1996 Jan; 58(1):9-16. PubMed ID: 8825233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier transform infrared microscopy of calcified turkey leg tendon.
    Gadaleta SJ; Camacho NP; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 1996 Jan; 58(1):17-23. PubMed ID: 8825234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals.
    Pleshko N; Boskey A; Mendelsohn R
    Biophys J; 1991 Oct; 60(4):786-93. PubMed ID: 1660314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite.
    Spevak L; Flach CR; Hunter T; Mendelsohn R; Boskey A
    Calcif Tissue Int; 2013 May; 92(5):418-28. PubMed ID: 23380987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional vibrational correlation spectroscopy of in vitro hydroxyapatite maturation.
    Ou-Yang H; Paschalis EP; Boskey AL; Mendelsohn R
    Biopolymers; 2000; 57(3):129-39. PubMed ID: 10805910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.
    Sauer GR; Zunic WB; Durig JR; Wuthier RE
    Calcif Tissue Int; 1994 May; 54(5):414-20. PubMed ID: 8062160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release.
    Niu X; Chen S; Tian F; Wang L; Feng Q; Fan Y
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1120-1124. PubMed ID: 27772712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration.
    Miller LM; Vairavamurthy V; Chance MR; Mendelsohn R; Paschalis EP; Betts F; Boskey AL
    Biochim Biophys Acta; 2001 Jul; 1527(1-2):11-9. PubMed ID: 11420138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, x-ray diffraction, and 31P and proton nuclear magnetic resonance study.
    Bonar LC; Shimizu M; Roberts JE; Griffin RG; Glimcher MJ
    J Bone Miner Res; 1991 Nov; 6(11):1167-76. PubMed ID: 1666806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An infrared spectroscopic study of aortic valve. A possible mechanism of calcification and the role of magnesium salts.
    Dritsa V; Pissaridi K; Koutoulakis E; Mamarelis I; Kotoulas C; Anastassopoulou J
    In Vivo; 2014; 28(1):91-8. PubMed ID: 24425841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silica- and zirconia-hybridized amorphous calcium phosphate: effect on transformation to hydroxyapatite.
    Skrtic D; Antonucci JM; Eanes ED; Brunworth RT
    J Biomed Mater Res; 2002 Mar; 59(4):597-604. PubMed ID: 11774320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material.
    Kim EH; Yim SB; Jung HC; Lee EJ
    J Hazard Mater; 2006 Aug; 136(3):690-7. PubMed ID: 16504382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical characterization of hydroxyapatite obtained by wet chemistry in the presence of V, Co, and Cu ions.
    Moseke C; Gelinsky M; Groll J; Gbureck U
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1654-61. PubMed ID: 23827620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite.
    Siddharthan A; Seshadri SK; Sampath Kumar TS
    J Mater Sci Mater Med; 2004 Dec; 15(12):1279-84. PubMed ID: 15747179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
    Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H
    Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of citrate and NaCl on size, morphology, crystallinity and microstructure of calcium phosphates obtained from aqueous solutions at acidic or near-neutral pH.
    Mekmene O; Rouillon T; Quillard S; Pilet P; Bouler JM; Pezennec S; Gaucheron F
    J Dairy Res; 2012 May; 79(2):238-48. PubMed ID: 22559064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of albumin on brushite transformation to hydroxyapatite.
    Xie J; Riley C; Chittur K
    J Biomed Mater Res; 2001 Dec; 57(3):357-65. PubMed ID: 11523030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared microscopic imaging of bone: spatial distribution of CO3(2-).
    Ou-Yang H; Paschalis EP; Mayo WE; Boskey AL; Mendelsohn R
    J Bone Miner Res; 2001 May; 16(5):893-900. PubMed ID: 11341334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.