BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 8825366)

  • 21. Effects of chenodeoxy- and ursodeoxycholic acid on absorption, secretion and permeability in rat colon and small intestine.
    Caspary WF; Meyne K
    Digestion; 1980; 20(3):168-74. PubMed ID: 7390046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protective effects of ursodeoxycholic acid on chenodeoxycholic acid-induced liver injury in hamsters.
    Iwaki T; Ishizaki K; Kinoshita S; Tanaka H; Fukunari A; Tsurufuji M; Imada T
    World J Gastroenterol; 2007 Oct; 13(37):5003-8. PubMed ID: 17854144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of alkaline phosphatase gene expression in human hepatoma cells by bile acids.
    Khan KN; Tsutsumi T; Nakata K; Nakao K; Kato Y; Nagataki S
    J Gastroenterol Hepatol; 1998 Jun; 13(6):643-50. PubMed ID: 9715409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new amino acid derivative of ursodeoxycholate, (N-L-Glutamyl)-UDCA (UDCA-Glu), to selectively release UDCA in the colon.
    Asciutti S; Castellani D; Nardi E; Morelli O; Clementi M; Chistolini F; Gentili G; Setchell KD; O'Connell N; Pellicciari R; Clerici C
    Anticancer Res; 2009 Dec; 29(12):4971-9. PubMed ID: 20044604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of bile salts on bile formation in rabbits.
    Miyasaka K; Kitani K
    Life Sci; 1986 Jun; 38(22):2053-61. PubMed ID: 3713438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrially mediated synergistic cell killing by bile acids.
    Rolo AP; Palmeira CM; Wallace KB
    Biochim Biophys Acta; 2003 Jan; 1637(1):127-32. PubMed ID: 12527417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monoketocholate can decrease transcellular permeation of methotrexate across Caco-2 cell monolayers and reduce its intestinal absorption in rat.
    Chen G; Fawcett JP; Mikov M; Tucker IG
    J Pharm Pharmacol; 2009 Jul; 61(7):953-9. PubMed ID: 19589239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the mechanism of the ursodeoxycholic acid-induced increase in hepatic low-density lipoprotein binding.
    Bouscarel B; Ceryak S; Robins SJ; Fromm H
    Lipids; 1995 Jul; 30(7):607-17. PubMed ID: 7564915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bile acids influence hepatic chemiluminescence in normal and oxidative-stressed rats.
    Nakashima T; Matsumoto N; Nakajima Y; Ishikawa H; Mitsuyoshi H; Inaba K; Sakai M; Sakamoto Y; Matsumoto M; Shima T; Kashima K; Kitayoshi T; Shimamoto N
    J Gastroenterol Hepatol; 1998 Jan; 13(1):81-7. PubMed ID: 9737577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of chenodeoxycholate and ursodeoxycholate on nucleation time in human gallbladder bile.
    Hirota I; Chijiiwa K; Noshiro H; Nakayama F
    Gastroenterology; 1992 May; 102(5):1668-74. PubMed ID: 1568577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enteral absorption of octreotide.
    Fricker G; Drewe J; Vonderscher J; Kissel T; Beglinger C
    Br J Pharmacol; 1992 Apr; 105(4):783-6. PubMed ID: 1504712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of chenodeoxycholic acid and ursodeoxycholic acid administration on acyl-CoA: cholesterol acyltransferase activity in human liver.
    Abate N; Carubbi F; Bozzoli M; Bertolotti M; Farah I; Rosi A; Carulli N
    Ital J Gastroenterol; 1994; 26(6):287-93. PubMed ID: 7949265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal flora, with particular reference to the mutual conversion between the two bile acids.
    Hirano S; Masuda N; Oda H
    J Lipid Res; 1981 Jul; 22(5):735-43. PubMed ID: 7288282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel cytotoxic agents from an unexpected source: bile acids and ovarian tumor apoptosis.
    Horowitz NS; Hua J; Powell MA; Gibb RK; Mutch DG; Herzog TJ
    Gynecol Oncol; 2007 Nov; 107(2):344-9. PubMed ID: 17720233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of mitochondrial dysfunction in combined bile acid-induced cytotoxicity: the switch between apoptosis and necrosis.
    Rolo AP; Palmeira CM; Holy JM; Wallace KB
    Toxicol Sci; 2004 May; 79(1):196-204. PubMed ID: 14976352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biphasic regulation by bile acids of dermal fibroblast proliferation through regulation of cAMP production and COX-2 expression level.
    Meng JP; Ceryak S; Aratsu Z; Jones L; Epstein L; Bouscarel B
    Am J Physiol Cell Physiol; 2006 Sep; 291(3):C546-54. PubMed ID: 16687473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of ileal bile acid-binding protein expression in Caco-2 cells by ursodeoxycholic acid: role of the farnesoid X receptor.
    Campana G; Pasini P; Roda A; Spampinato S
    Biochem Pharmacol; 2005 Jun; 69(12):1755-63. PubMed ID: 15935148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UDCA and CDCA alleviate 17α-ethinylestradiol-induced cholestasis through PKA-AMPK pathways in rats.
    Li X; Yuan Z; Liu R; Hassan HM; Yang H; Sun R; Zhang L; Jiang Z
    Toxicol Appl Pharmacol; 2016 Nov; 311():12-25. PubMed ID: 27743861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Further observations on the in vitro metabolism of chenodeoxycholic acid and ursodeoxycholic acid.
    Albini E; Marca G; Mellerio G
    Arzneimittelforschung; 1982; 32(12):1554-7. PubMed ID: 6891595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of combined bile acids on hepatocyte viability: cytoprotection or synergism.
    Rolo AP; Palmeira CM; Wallace KB
    Toxicol Lett; 2002 Feb; 126(3):197-203. PubMed ID: 11814708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.