These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 8825511)
41. Isolation of mosquito-pathogenic Bacillus sphaericus & B. thuringiensis from the root surface of hydrophytes. Manonmani AM; Rajendran G; Balaraman K Indian J Med Res; 1991 Mar; 93():111-4. PubMed ID: 1855819 [TBL] [Abstract][Full Text] [Related]
42. Efficacy of Bacillus thuringiensis israelensis, Bacillus sphaericus and temephos for managing Anopheles larvae in Eritrea. Shililu JI; Tewolde GM; Brantly E; Githure JI; Mbogo CM; Beier JC; Fusco R; Novak RJ J Am Mosq Control Assoc; 2003 Sep; 19(3):251-8. PubMed ID: 14524547 [TBL] [Abstract][Full Text] [Related]
43. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Arredondo-Jiménez JI; Valdez-Delgado KM Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749 [TBL] [Abstract][Full Text] [Related]
44. A novel mosquitocidal Bacillus thuringiensis strain LLP29 isolated from the phylloplane of Magnolia denudata. Zhang L; Huang E; Lin J; Gelbic I; Zhang Q; Guan Y; Huang T; Guan X Microbiol Res; 2010 Feb; 165(2):133-41. PubMed ID: 19577911 [TBL] [Abstract][Full Text] [Related]
45. Laboratory evaluation of 18 repellent compounds as oviposition deterrents of Aedes albopictus and as larvicides of Aedes aegypti, Anopheles quadrimaculatus, and Culex quinquefasciatus. Xue RD; Barnard DR; Ali A J Am Mosq Control Assoc; 2003 Dec; 19(4):397-403. PubMed ID: 14710743 [TBL] [Abstract][Full Text] [Related]
46. Toxicity in carcasses of Bacillus thuringiensis var. israelensis-killed Aedes aegypti larvae against scavenging larvae: implications to bioassay. Zaritsky A; Khawaled K J Am Mosq Control Assoc; 1986 Dec; 2(4):555-9. PubMed ID: 3507532 [No Abstract] [Full Text] [Related]
47. [Toxicity of isolates of Bacillus thuringiensis from Wroclaw against larvae of Aedes aegypti]. Lonc E; Kucińska J; Rydzanicz K Wiad Parazytol; 2001; 47(3):297-303. PubMed ID: 16894738 [TBL] [Abstract][Full Text] [Related]
48. Effect of inactivation by sunlight on the larvicidal activities of mosquitocidal Bacillus thuringiensis H-14 isolates from Nigerian soils. Obeta JA J Commun Dis; 1996 Jun; 28(2):94-100. PubMed ID: 8810143 [TBL] [Abstract][Full Text] [Related]
49. [The effect of Culex family mosquito larva on the sensitivity of Anopheles mosquitos with various karyotypes to the entomopathogenic bacteria Bacillus thuringiensis subsp. Israelensis]. Gordeev MI; Burlak VA Genetika; 1994 Mar; 30(3):367-72. PubMed ID: 8188058 [TBL] [Abstract][Full Text] [Related]
50. Method for determining settling rates of Bacillus thuringiensis serotype H-14 formulations. Mullen GR; Hinkle NC J Am Mosq Control Assoc; 1988 Jun; 4(2):132-7. PubMed ID: 3193109 [TBL] [Abstract][Full Text] [Related]
51. Isolation of novel Bacillus species showing high mosquitocidal activity against several mosquito species. Hayes SR; Hudon M; Park HW J Invertebr Pathol; 2011 May; 107(1):79-81. PubMed ID: 21276795 [TBL] [Abstract][Full Text] [Related]
52. Laboratory and field plot bioassay of Bacillus sphaericus against Arkansas mosquito species. Groves RL; Meisch MV J Am Mosq Control Assoc; 1996 Jun; 12(2 Pt 1):220-4. PubMed ID: 8827596 [TBL] [Abstract][Full Text] [Related]
53. [The suitability of bacterial preparations intended for mosquito control in salt water]. Rasnitsyn OP; Voĭtsik AA; Skidan KB Med Parazitol (Mosk); 1993; (3):33-4. PubMed ID: 8041317 [TBL] [Abstract][Full Text] [Related]
54. Laboratory bioassay to compare susceptibilities of Aedes aegypti and Anopheles albimanus to Bacillus thuringiensis var. israelensis as affected by their feeding rates. Mahmood F J Am Mosq Control Assoc; 1998 Mar; 14(1):69-71. PubMed ID: 9599326 [TBL] [Abstract][Full Text] [Related]
55. [The effect of water temperature on the action of bacterial insecticides against mosquito larvae]. Rasnitsyn SP; Voĭtsik AA; Iasiukevich VV Med Parazitol (Mosk); 1993; (1):8-10. PubMed ID: 8336659 [TBL] [Abstract][Full Text] [Related]
56. [A trial of the possible joint use of mermithids and bacterial preparations for the control of mosquito larvae]. Vladimirova VV; Pridantsev EA; Alirzaev GU; Voĭtsik AA Med Parazitol (Mosk); 1992; (3):33-5. PubMed ID: 1435554 [TBL] [Abstract][Full Text] [Related]
57. Small scale field trials with Bacillus thuringiensis variety israelensis H-14 strain against larvae of anopheline and culicine mosquitoes. Sharma SK; Kalra NL; Bhargava YS J Commun Dis; 1983 Dec; 15(4):223-34. PubMed ID: 6674325 [No Abstract] [Full Text] [Related]
58. [Evaluation of larvicidal effects of Bacillus thuringiensis var. israelensis (serotype H-14) and Bacillus sphaericus preparations and the susceptibility of adult mosquitoes to malarial plasmodia]. Ganushkina LA Med Parazitol (Mosk); 1987; (1):10-3. PubMed ID: 3553885 [No Abstract] [Full Text] [Related]
59. Ultralow volume application of Bacillus thuringiensis ssp. israelensis for the control of mosquitoes. Lee HL; Gregorio ER; Khadri MS; Seleena P J Am Mosq Control Assoc; 1996 Dec; 12(4):651-5. PubMed ID: 9046471 [TBL] [Abstract][Full Text] [Related]
60. Efficacy of Clostridium bifermentans serovar Malaysia on target and nontarget organisms. Yiallouros M; Storch V; Thiery I; Becker N J Am Mosq Control Assoc; 1994 Mar; 10(1):51-5. PubMed ID: 7912261 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]