BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8827450)

  • 1. Dual roles of DMPC and CHAPS in the refolding of bacterial opsins in vitro.
    Sugiyama Y; Mukohata Y
    J Biochem; 1996 Jun; 119(6):1143-9. PubMed ID: 8827450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that bilayer bending rigidity affects membrane protein folding.
    Booth PJ; Riley ML; Flitsch SL; Templer RH; Farooq A; Curran AR; Chadborn N; Wright P
    Biochemistry; 1997 Jan; 36(1):197-203. PubMed ID: 8993334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediates in the folding of the membrane protein bacteriorhodopsin.
    Booth PJ; Flitsch SL; Stern LJ; Greenhalgh DA; Kim PS; Khorana HG
    Nat Struct Biol; 1995 Feb; 2(2):139-43. PubMed ID: 7749918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.
    Allen SJ; Kim JM; Khorana HG; Lu H; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):423-35. PubMed ID: 11327777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of bacteriorhodopsin in mixed micelles.
    Renthal R; Hannapel C; Nguyen AS; Haas P
    Biochim Biophys Acta; 1990 Nov; 1030(1):176-81. PubMed ID: 2265188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediates in the assembly of bacteriorhodopsin investigated by time-resolved absorption spectroscopy.
    Booth PJ; Farooq A
    Eur J Biochem; 1997 Jun; 246(3):674-80. PubMed ID: 9219525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of transmembrane helix packing on tryptophan and tyrosine environments in detergent-solubilized bacterio-opsin.
    Renthal R; Haas P
    J Protein Chem; 1996 Apr; 15(3):281-9. PubMed ID: 8804576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal binding during folding and assembly of the membrane protein bacteriorhodopsin.
    Booth PJ; Farooq A; Flitsch SL
    Biochemistry; 1996 May; 35(18):5902-9. PubMed ID: 8639552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of carboxyl group modification on the chromophore regeneration of archaeopsin-1 and bacterioopsin.
    Sugiyama Y; Fujii K; Mukohata Y
    J Biochem; 1999 Jun; 125(6):1144-50. PubMed ID: 10348918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opsin stability and folding: modulation by phospholipid bicelles.
    McKibbin C; Farmer NA; Jeans C; Reeves PJ; Khorana HG; Wallace BA; Edwards PC; Villa C; Booth PJ
    J Mol Biol; 2007 Dec; 374(5):1319-32. PubMed ID: 17996895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary and tertiary structure of bacteriorhodopsin in the SDS denatured state.
    Krishnamani V; Hegde BG; Langen R; Lanyi JK
    Biochemistry; 2012 Feb; 51(6):1051-60. PubMed ID: 22242919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An insertion or deletion in the extramembrane loop connecting helices E and F of archaerhodopsin-1 affects in vitro refolding and slows the photocycle.
    Sugiyama Y; Koyanagi T; Yamada N; Mukohata Y
    Photochem Photobiol; 1997 Oct; 66(4):541-6. PubMed ID: 9337627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the folding and unfolding of wild-type and mutant forms of bacteriorhodopsin in micellar solutions: evaluation of reversible unfolding conditions.
    Chen GQ; Gouaux E
    Biochemistry; 1999 Nov; 38(46):15380-7. PubMed ID: 10563824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chromophore retinal hinders passive proton/hydroxide ion translocation through bacteriorhodopsin.
    Burghaus PA; Dencher NA
    Arch Biochem Biophys; 1989 Dec; 275(2):395-409. PubMed ID: 2556964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures.
    London E; Khorana HG
    J Biol Chem; 1982 Jun; 257(12):7003-11. PubMed ID: 7085614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process.
    Popot JL; Gerchman SE; Engelman DM
    J Mol Biol; 1987 Dec; 198(4):655-76. PubMed ID: 3430624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation and dynamics of [3-13C]Ala- labeled bacteriorhodopsin and bacterioopsin, induced by interaction with retinal and its analogs, as studied by 13C nuclear magnetic resonance.
    Tuzi S; Yamaguchi S; Naito A; Needleman R; Lanyi JK; Saitô H
    Biochemistry; 1996 Jun; 35(23):7520-7. PubMed ID: 8652531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of detergents and hexafluoroisopropanol on the conformation of a non-helical and a helical plant protease inhibitor.
    Haq SK; Khan RH
    Int J Biol Macromol; 2005 Jul; 36(1-2):47-53. PubMed ID: 16022894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.