These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 8828176)
1. DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat. Suyama Y; Kawamuro K; Kinoshita I; Yoshimura K; Tsumura Y; Takahara H Genes Genet Syst; 1996 Jun; 71(3):145-9. PubMed ID: 8828176 [TBL] [Abstract][Full Text] [Related]
2. Population dynamics and genetic changes of Picea abies in the South Carpathians revealed by pollen and ancient DNA analyses. Magyari EK; Major A; Bálint M; Nédli J; Braun M; Rácz I; Parducci L BMC Evol Biol; 2011 Mar; 11():66. PubMed ID: 21392386 [TBL] [Abstract][Full Text] [Related]
3. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Tollefsrud MM; Kissling R; Gugerli F; Johnsen Ø; Skrøppa T; Cheddadi R; Van der Knaap WO; Latałowa M; Terhürne-Berson R; Litt T; Geburek T; Brochmann C; Sperisen C Mol Ecol; 2008 Sep; 17(18):4134-50. PubMed ID: 19238710 [TBL] [Abstract][Full Text] [Related]
4. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Manos PS; Soltis PS; Soltis DE; Manchester SR; Oh SH; Bell CD; Dilcher DL; Stone DE Syst Biol; 2007 Jun; 56(3):412-30. PubMed ID: 17558964 [TBL] [Abstract][Full Text] [Related]
5. Integrating phylogeography and paleoecology to investigate the origin and dynamics of hybrid zones: insights from two widespread North American firs. Cinget B; de Lafontaine G; Gérardi S; Bousquet J Mol Ecol; 2015 Jun; 24(11):2856-70. PubMed ID: 25865063 [TBL] [Abstract][Full Text] [Related]
6. Ancient DNA from pollen: a genetic record of population history in Scots pine. Parducci L; Suyama Y; Lascoux M; Bennett KD Mol Ecol; 2005 Aug; 14(9):2873-82. PubMed ID: 16029485 [TBL] [Abstract][Full Text] [Related]
7. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA. Parducci L; Väliranta M; Salonen JS; Ronkainen T; Matetovici I; Fontana SL; Eskola T; Sarala P; Suyama Y Philos Trans R Soc Lond B Biol Sci; 2015 Jan; 370(1660):20130382. PubMed ID: 25487333 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetic relationships, possible ancient hybridization, and biogeographic history of Abies (Pinaceae) based on data from nuclear, plastid, and mitochondrial genomes. Xiang QP; Wei R; Shao YZ; Yang ZY; Wang XQ; Zhang XC Mol Phylogenet Evol; 2015 Jan; 82 Pt A():1-14. PubMed ID: 25462996 [TBL] [Abstract][Full Text] [Related]
9. Unexpected presence of Fagus orientalis complex in Italy as inferred from 45,000-year-old DNA pollen samples from Venice lagoon. Paffetti D; Vettori C; Caramelli D; Vernesi C; Lari M; Paganelli A; Paule L; Giannini R BMC Evol Biol; 2007 Aug; 7 Suppl 2(Suppl 2):S6. PubMed ID: 17767734 [TBL] [Abstract][Full Text] [Related]
10. Wind-dispersed pollen mediates postglacial gene flow among refugia. Liepelt S; Bialozyt R; Ziegenhagen B Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14590-4. PubMed ID: 12391327 [TBL] [Abstract][Full Text] [Related]
11. Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. Thornhill AH; Popple LW; Carter RJ; Ho SY; Crisp MD Mol Phylogenet Evol; 2012 Apr; 63(1):15-27. PubMed ID: 22197806 [TBL] [Abstract][Full Text] [Related]
12. An rbcL sequence from a Miocene Taxodium (bald cypress). Soltis PS; Soltis DE; Smiley CJ Proc Natl Acad Sci U S A; 1992 Jan; 89(1):449-51. PubMed ID: 1729716 [TBL] [Abstract][Full Text] [Related]
13. Estimation of the age of extant Ephedra using chloroplast rbcL sequence data. Huang J; Price RA Mol Biol Evol; 2003 Mar; 20(3):435-40. PubMed ID: 12644564 [TBL] [Abstract][Full Text] [Related]
14. Hedycarya macrofossils and associated Planarpollenites pollen from the early Miocene of New Zealand. Conran JG; Bannister JM; Mildenhall DC; Lee DE Am J Bot; 2016 May; 103(5):938-56. PubMed ID: 27208361 [TBL] [Abstract][Full Text] [Related]
15. Potential of CLSM in studying some modern and fossil palynological objects. Gavrilova O; Zavialova N; Tekleva M; Karasev E J Microsc; 2018 Mar; 269(3):291-309. PubMed ID: 28940409 [TBL] [Abstract][Full Text] [Related]
16. Effects of tree architecture on pollen dispersal and mating patterns in Abies pinsapo Boiss. (Pinaceae). Sánchez-Robles JM; García-Castaño JL; Balao F; Terrab A; Navarro-Sampedro L; Tremetsberger K; Talavera S Mol Ecol; 2014 Dec; 23(24):6165-78. PubMed ID: 25355046 [TBL] [Abstract][Full Text] [Related]
17. Molecular phylogenetic position of Japanese Abies (Pinaceae) based on chloroplast DNA sequences. Suyama Y; Yoshimaru H; Tsumura Y Mol Phylogenet Evol; 2000 Aug; 16(2):271-7. PubMed ID: 10942613 [TBL] [Abstract][Full Text] [Related]
18. Chloroplast DNA sequence from a miocene Magnolia species. Golenberg EM; Giannasi DE; Clegg MT; Smiley CJ; Durbin M; Henderson D; Zurawski G Nature; 1990 Apr; 344(6267):656-8. PubMed ID: 2325772 [TBL] [Abstract][Full Text] [Related]
19. [Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA]. Semerikova SA; Semerikov VL Genetika; 2014 Jan; 50(1):12-25. PubMed ID: 25711008 [TBL] [Abstract][Full Text] [Related]
20. Molecular evidence of natural hybridization between abies veitchii and A. homolepis (Pinaceae) revealed by chloroplast, mitochondrial and nuclear DNA markers. Isoda K; Shiraishi S; Watanabe S; Kitamura K Mol Ecol; 2000 Dec; 9(12):1965-74. PubMed ID: 11123609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]