These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8828181)

  • 1. Composition of the excitatory drive during swimming in two amphibian embryos: Rana and Bufo.
    Perrins R; Soffe SR
    J Comp Physiol A; 1996 Oct; 179(4):563-73. PubMed ID: 8828181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal distribution of components of excitatory synaptic input to motoneurones during swimming in young Xenopus tadpoles: experiments with antagonists.
    Zhao FY; Wolf E; Roberts A
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):887-901. PubMed ID: 9714868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos.
    Perrins R; Soffe SR
    J Neurophysiol; 1996 Aug; 76(2):1025-35. PubMed ID: 8871217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1013-9. PubMed ID: 7608751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereological analysis of mitochondria in embryos of Rana temporaria and Bufo bufo during cleavage.
    Romek M; Krzysztofowicz E
    Folia Histochem Cytobiol; 2005; 43(1):57-63. PubMed ID: 15871564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fluorescent analysis of cryopreserved totipotent cells of amphibian embryos].
    Uteshev VK; Mel'nikova EV; Kaurova SA; Nikitin VA; Gakhova EN; Karnaukhov VN
    Biofizika; 2002; 47(3):539-45. PubMed ID: 12068613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity.
    Roberts A; Perrins R
    J Physiol Paris; 1995; 89(4-6):241-8. PubMed ID: 8861822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the roles of glutamatergic and cholinergic synaptic drive in the control of fictive swimming frequency in young Xenopus tadpoles.
    Zhao FY; Roberts A
    J Comp Physiol A; 1998 Dec; 183(6):753-8. PubMed ID: 9861707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic and electrical motoneuron-to-motoneuron synapses contribute to on-cycle excitation during swimming in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1005-12. PubMed ID: 7608750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of yolk platelets during early embryonic development of Rana temporaria and Bufo bufo.
    Romek M; Krzysztofowicz E
    Folia Histochem Cytobiol; 2001; 39(3):283-91. PubMed ID: 11534786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord.
    Soffe SR
    J Neurosci; 1993 Oct; 13(10):4456-69. PubMed ID: 8410198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos.
    Dale N; Roberts A
    J Physiol; 1985 Jun; 363():35-59. PubMed ID: 2862278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor patterns for two distinct rhythmic behaviors evoked by excitatory amino acid agonists in the Xenopus embryo spinal cord.
    Soffe SR
    J Neurophysiol; 1996 May; 75(5):1815-25. PubMed ID: 8734582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central circuits controlling locomotion in young frog tadpoles.
    Roberts A; Soffe SR; Wolf ES; Yoshida M; Zhao FY
    Ann N Y Acad Sci; 1998 Nov; 860():19-34. PubMed ID: 9928299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Electrotonic transmission between primary afferent fibers and the motor neurons of the isolated spinal cord of various representative amphibians].
    Shiriaev BI
    Zh Evol Biokhim Fiziol; 1983; 19(5):500-2. PubMed ID: 6316697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of a non-rhythmic motor pattern by nitric oxide in hatchling Rana temporaria embryos.
    McLean DL; McDearmid JR; Sillar KT
    J Exp Biol; 2001 Apr; 204(Pt 7):1307-17. PubMed ID: 11249840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical coupling and intrinsic neuronal oscillations in Rana temporaria spinal cord.
    Sillar KT; Simmers AJ
    Eur J Morphol; 1994 Aug; 32(2-4):293-8. PubMed ID: 7803182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillatory membrane properties of spinal cord neurons that are active during fictive swimming in Rana temporaria embryos.
    Sillar KT; Simmers AJ
    Eur J Morphol; 1994 Aug; 32(2-4):185-92. PubMed ID: 7803165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-linear summation of excitatory synaptic inputs to small neurones: a case study in spinal motoneurones of the young Xenopus tadpole.
    Wolf E; Zhao FY; Roberts A
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):871-86. PubMed ID: 9714867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular recordings from spinal neurons during 'swimming' in paralysed amphibian embryos.
    Roberts A; Khan JA
    Philos Trans R Soc Lond B Biol Sci; 1982 Jan; 296(1081):213-28. PubMed ID: 17506219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.