These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 8828237)

  • 21. Killer Meiotic Drive and Dynamic Evolution of the wtf Gene Family.
    Eickbush MT; Young JM; Zanders SE
    Mol Biol Evol; 2019 Jun; 36(6):1201-1214. PubMed ID: 30991417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contrasting patterns of X-chromosome divergence underlie multiple sex-ratio polymorphisms in stalk-eyed flies.
    Paczolt KA; Reinhardt JA; Wilkinson GS
    J Evol Biol; 2017 Sep; 30(9):1772-1784. PubMed ID: 28688201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local selection underlies the geographic distribution of sex-ratio drive in Drosophila neotestacea.
    Dyer KA
    Evolution; 2012 Apr; 66(4):973-84. PubMed ID: 22486683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interspecific interactions that affect ageing: Age-distorters manipulate host ageing to their own evolutionary benefits.
    Teulière J; Bernard C; Bapteste E
    Ageing Res Rev; 2021 Sep; 70():101375. PubMed ID: 34082078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The evolution of hermaphroditism by an infectious male-derived cell lineage: an inclusive-fitness analysis.
    Gardner A; Ross L
    Am Nat; 2011 Aug; 178(2):191-201. PubMed ID: 21750383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Informative predation: Towards a new species concept].
    Lherminier P
    C R Biol; 2018 Apr; 341(4):209-218. PubMed ID: 29606595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid evolution of a Y-chromosome heterochromatin protein underlies sex chromosome meiotic drive.
    Helleu Q; Gérard PR; Dubruille R; Ogereau D; Prud'homme B; Loppin B; Montchamp-Moreau C
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):4110-5. PubMed ID: 26979956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The sex-ratio trait and its evolution in Drosophila simulans: a comparative approach.
    Jutier D; Derome N; Montchamp-Moreau C
    Genetica; 2004 Mar; 120(1-3):87-99. PubMed ID: 15088650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The evolution of chromosomal sex determination and dosage compensation.
    Charlesworth B
    Curr Biol; 1996 Feb; 6(2):149-62. PubMed ID: 8673462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The meaning of intragenomic conflict.
    Gardner A; Úbeda F
    Nat Ecol Evol; 2017 Dec; 1(12):1807-1815. PubMed ID: 29109471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intragenomic conflict produces sex ratio dynamics that favor maternal sex ratio distorters.
    Rood ES; Freedberg S
    Ecol Evol; 2016 Nov; 6(22):8085-8093. PubMed ID: 27878080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The evolution of non-reciprocal nuclear exchange in mushrooms as a consequence of genomic conflict.
    Aanen DK; Kuyper TW; Debets AJ; Hoekstra RF
    Proc Biol Sci; 2004 Jun; 271(1545):1235-41. PubMed ID: 15306347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytoplasmic feminizing elements in a two-population model: infection dynamics, gene flow modification, and the spread of autosomal suppressors.
    Kobayashi Y; Telschow A
    J Evol Biol; 2010 Dec; 23(12):2558-68. PubMed ID: 20939837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The evolution of the mammalian Y chromosome.
    Maxson SC
    Behav Genet; 1990 Jan; 20(1):109-26. PubMed ID: 2189397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cooperation and conflict in the evolution of individuality. IV. Conflict mediation and evolvability in Volvox carteri.
    Michod RE; Nedelcu AM; Roze D
    Biosystems; 2003 May; 69(2-3):95-114. PubMed ID: 12689724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary conflicts of interest: are female sexual decisions different?
    Eberhard WG
    Am Nat; 2005 May; 165 Suppl 5():S19-25. PubMed ID: 15795858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic conflict drives patterns of X-linked population structure in Drosophila neotestacea.
    Dyer KA; Bray MJ; Lopez SJ
    Mol Ecol; 2013 Jan; 22(1):157-69. PubMed ID: 23121224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strong hybrid male incompatibilities impede the spread of a selfish chromosome between populations of a fly.
    Verspoor RL; Smith JML; Mannion NLM; Hurst GDD; Price TAR
    Evol Lett; 2018 Jun; 2(3):169-179. PubMed ID: 30283674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occasional recombination of a selfish X-chromosome may permit its persistence at high frequencies in the wild.
    Pieper KE; Dyer KA
    J Evol Biol; 2016 Nov; 29(11):2229-2241. PubMed ID: 27423061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurogenomics and the role of a large mutational target on rapid behavioral change.
    Stanley CE; Kulathinal RJ
    Biol Direct; 2016 Nov; 11(1):60. PubMed ID: 27825385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.