These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity. Convertino VA Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S45-52. PubMed ID: 8897404 [TBL] [Abstract][Full Text] [Related]
5. Spacelab Life Sciences flight experiments: an integrated approach to the study of cardiovascular deconditioning and orthostatic hypotension. Gaffney FA Acta Astronaut; 1987; 15(5):291-4. PubMed ID: 11538833 [TBL] [Abstract][Full Text] [Related]
6. [The progress in research on changes of central venous pressure under simulated weightlessness and microgravity]. Wang DS; Sun L; Xiang QL; Ren W Space Med Med Eng (Beijing); 1999 Dec; 12(6):459-63. PubMed ID: 12434816 [TBL] [Abstract][Full Text] [Related]
7. Forced expirations and maximum expiratory flow-volume curves during sustained microgravity on SLS-1. Elliott AR; Prisk GK; Guy HJ; Kosonen JM; West JB J Appl Physiol (1985); 1996 Jul; 81(1):33-43. PubMed ID: 8828645 [TBL] [Abstract][Full Text] [Related]
8. Metabolism and biochemistry in hypogravity. Leach CS Acta Astronaut; 1991; 23():105-8. PubMed ID: 11537110 [TBL] [Abstract][Full Text] [Related]
9. Transesophageal echocardiographic evaluation of baboons during microgravity induced by parabolic flight. Vernalis MN; Latham RD; Fanton JW; Gaffney FA Physiologist; 1993; 36(1 Suppl):S16-7. PubMed ID: 11537422 [TBL] [Abstract][Full Text] [Related]
10. Atrial distension in humans during microgravity induced by parabolic flights. Videbaek R; Norsk P J Appl Physiol (1985); 1997 Dec; 83(6):1862-6. PubMed ID: 9390956 [TBL] [Abstract][Full Text] [Related]
12. Central hemodynamics in a baboon model during microgravity induced by parabolic flight. Latham RD; Fanton JW; Vernalis MN; Gaffney FA; Crisman RP Adv Space Res; 1994; 14(8):349-58. PubMed ID: 11537938 [TBL] [Abstract][Full Text] [Related]
13. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. Prisk GK; Guy HJ; Elliott AR; Deutschman RA; West JB J Appl Physiol (1985); 1993 Jul; 75(1):15-26. PubMed ID: 8376261 [TBL] [Abstract][Full Text] [Related]
15. Regulation of body fluid compartments during short-term spaceflight. Leach CS; Alfrey CP; Suki WN; Leonard JI; Rambaut PC; Inners LD; Smith SM; Lane HW; Krauhs JM J Appl Physiol (1985); 1996 Jul; 81(1):105-16. PubMed ID: 8828652 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulation of the influence of gravity and posture on cardiac performance. Peterson K; Ozawa ET; Pantalos GM; Sharp MK Ann Biomed Eng; 2002 Feb; 30(2):247-59. PubMed ID: 11962776 [TBL] [Abstract][Full Text] [Related]
17. Is there resetting of central venous pressure in microgravity? Convertino VA; Ludwig DA; Elliott JJ; Wade CE J Gravit Physiol; 2001 Jul; 8(1):P51-2. PubMed ID: 12638621 [TBL] [Abstract][Full Text] [Related]
18. Central venous pressure and cardiac function during spaceflight. White RJ; Blomqvist CG J Appl Physiol (1985); 1998 Aug; 85(2):738-46. PubMed ID: 9688754 [TBL] [Abstract][Full Text] [Related]
19. Influence of gravity on cardiac performance. Pantalos GM; Sharp MK; Woodruff SJ; O'Leary DS; Lorange R; Everett SD; Bennett TE; Shurfranz T Ann Biomed Eng; 1998; 26(6):931-43. PubMed ID: 9846932 [TBL] [Abstract][Full Text] [Related]
20. Echocardiograms during six hours of bedrest at head-down and head-up tilt and during space flight. Lathers CM; Riddle JM; Mulvagh SL; Mukai C; Diamandis PH; Dussack LG; Bungo MW; Charles JB J Clin Pharmacol; 1993 Jun; 33(6):535-43. PubMed ID: 8366179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]