These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8828646)

  • 1. Tactile influences on astronaut visual spatial orientation: human neurovestibular studies on SLS-2.
    Young LR; Mendoza JC; Groleau N; Wojcik PW
    J Appl Physiol (1985); 1996 Jul; 81(1):44-9. PubMed ID: 8828646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of spaceflight on ability to sense and control roll tilt: human neurovestibular studies on SLS-2.
    Merfeld DM
    J Appl Physiol (1985); 1996 Jul; 81(1):50-7. PubMed ID: 8828647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceptual responses to linear acceleration after spaceflight: human neurovestibular studies on SLS-2.
    Merfeld DM; Polutchko KA; Schultz K
    J Appl Physiol (1985); 1996 Jul; 81(1):58-68. PubMed ID: 8828648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 2. Visual vestibular tilt interaction in weightlessness.
    Young LR; Shelhamer M; Modestino S
    Exp Brain Res; 1986; 64(2):299-307. PubMed ID: 3492385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microgravity enhances the relative contribution of visually-induced motion sensation.
    Young LR; Shelhamer M
    Aviat Space Environ Med; 1990 Jun; 61(6):525-30. PubMed ID: 2369392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 1. Sensory adaptation to weightlessness and readaptation to one-g: an overview.
    Young LR; Oman CM; Watt DG; Money KE; Lichtenberg BK; Kenyon RV; Arrott AP
    Exp Brain Res; 1986; 64(2):291-8. PubMed ID: 3492384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibular plasticity following orbital spaceflight: recovery from postflight postural instability.
    Black FO; Paloski WH; Doxey-Gasway DD; Reschke MF
    Acta Otolaryngol Suppl; 1995; 520 Pt 2():450-4. PubMed ID: 8749187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial orientation and posture during and following weightlessness: human experiments on Spacelab Life Sciences 1.
    Young LR; Oman CM; Merfeld D; Watt D; Roy S; DeLuca C; Balkwill D; Christie J; Groleau N; Jackson DK
    J Vestib Res; 1993; 3(3):231-9. PubMed ID: 8275259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight.
    Clément G; Moore ST; Raphan T; Cohen B
    Exp Brain Res; 2001 Jun; 138(4):410-8. PubMed ID: 11465738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between selected orientation rest frame, circular vection and space motion sickness.
    Harm DL; Parker DE; Reschke MF; Skinner NC
    Brain Res Bull; 1998 Nov; 47(5):497-501. PubMed ID: 10052580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight.
    Moore ST; Cohen B; Raphan T; Berthoz A; Clément G
    Exp Brain Res; 2005 Jan; 160(1):38-59. PubMed ID: 15289967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of spaceflight on open-loop and closed-loop postural control mechanisms: human neurovestibular studies on SLS-2.
    Collins JJ; De Luca CJ; Pavlik AE; Roy SH; Emley MS
    Exp Brain Res; 1995; 107(1):145-50. PubMed ID: 8751072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spaceflight influences on ocular counterrolling and other neurovestibular reactions.
    Young LR; Sinha P
    Otolaryngol Head Neck Surg; 1998 Mar; 118(3 Pt 2):S31-4. PubMed ID: 9525488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight.
    Reschke MF; Bloomberg JJ; Harm DL; Paloski WH; Layne C; McDonald V
    Brain Res Brain Res Rev; 1998 Nov; 28(1-2):102-17. PubMed ID: 9795167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perception of longitudinal body axis in microgravity during parabolic flight.
    Clément G; Arnesen TN; Olsen MH; Sylvestre B
    Neurosci Lett; 2007 Feb; 413(2):150-3. PubMed ID: 17174031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vestibular, proprioceptive, and haptic contributions to spatial orientation.
    Lackner JR; DiZio P
    Annu Rev Psychol; 2005; 56():115-47. PubMed ID: 15709931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensorimotor impairment from a new analog of spaceflight-altered neurovestibular cues.
    Dixon JB; Clark TK
    J Neurophysiol; 2020 Jan; 123(1):209-223. PubMed ID: 31747329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optokinetic stimulation in microgravity: torsional eye movements and subjective visual vertical.
    Krafczyk S; Knapek M; Philipp J; Querner V; Dieterich M
    Aviat Space Environ Med; 2003 May; 74(5):517-21. PubMed ID: 12751579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive changes in perception of body orientation and mental image rotation in microgravity.
    Clement G; Berthoz A; Lestienne F
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A159-63. PubMed ID: 3499892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The vestibular system and human dynamic space orientation. NASA CR-628.
    Meiry JL
    NASA Contract Rep NASA CR; 1966 Nov; ():1-192. PubMed ID: 5297175
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.