These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 8828771)
1. Bacterial challenge of NISSHO ultrafilter ETF 609: results of in vitro testing. Krautzig S; Lonnemann G; Shaldon S; Koch KM Artif Organs; 1996 Jul; 20(7):798-800. PubMed ID: 8828771 [TBL] [Abstract][Full Text] [Related]
2. Transmembrane passage of cytokine-inducing bacterial products across new and reprocessed polysulfone dialyzers. Sundaram S; Barrett TW; Meyer KB; Perrella C; Neto MC; King AJ; Pereira BJ J Am Soc Nephrol; 1996 Oct; 7(10):2183-91. PubMed ID: 8915979 [TBL] [Abstract][Full Text] [Related]
3. Differences in the permeability of high-flux dialyzer membranes for bacterial pyrogens. Schindler R; Christ-Kohlrausch F; Frei U; Shaldon S Clin Nephrol; 2003 Jun; 59(6):447-54. PubMed ID: 12834177 [TBL] [Abstract][Full Text] [Related]
4. Transfer of cytokine-inducing bacterial products across hemodialyzer membranes in the presence of plasma or whole blood. Pereira BJ; Sundaram S; Barrett TW; Butt NK; Porat R; King AJ; Dinarello CA Clin Nephrol; 1996 Dec; 46(6):394-401. PubMed ID: 8982556 [TBL] [Abstract][Full Text] [Related]
5. Pyrogen retention by the Asahi APS-650 polysulfone dialyzer during in vitro dialysis with whole human donor blood. Linnenweber S; Lonnemann G ASAIO J; 2000; 46(4):444-7. PubMed ID: 10926143 [TBL] [Abstract][Full Text] [Related]
6. No evidence for endotoxin transfer across high flux polysulfone membranes. Bommer J; Becker KP; Urbaschek R; Ritz E; Urbaschek B Clin Nephrol; 1987 Jun; 27(6):278-82. PubMed ID: 3608251 [TBL] [Abstract][Full Text] [Related]
7. On line filtration of dialysate: structural and functional features of an asymmetric polysulfone hollow fiber ultrafilter (Diaclean). Ronco C; Cappelli G; Ballestri M; Lusvarghi E; Frisone P; Milan M; Dell'Aquila R; Crepaldi C; Dissegna D; Gastaldon F Int J Artif Organs; 1994 Oct; 17(10):515-20. PubMed ID: 7896424 [TBL] [Abstract][Full Text] [Related]
8. Removal of lipid A and Pseudomonas aeruginosa endotoxin from dialysis fluids by high-flux polysulfone ultrafilter (dialyzer). Rafiee-Tehrani M; Farrokhnia R; Falkenhagen D; Weber C PDA J Pharm Sci Technol; 1996; 50(5):306-10. PubMed ID: 8973116 [TBL] [Abstract][Full Text] [Related]
9. Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS). Laude-Sharp M; Caroff M; Simard L; Pusineri C; Kazatchkine MD; Haeffner-Cavaillon N Kidney Int; 1990 Dec; 38(6):1089-94. PubMed ID: 2127434 [TBL] [Abstract][Full Text] [Related]
10. Removal of limulus reactivity and cytokine-inducing capacity from bicarbonate dialysis fluids by ultrafiltration. Cappelli G; Tetta C; Cornia F; Di Felice A; Facchini F; Neri R; Lucchi L; Lusvarghi E Nephrol Dial Transplant; 1993; 8(10):1133-9. PubMed ID: 8272229 [TBL] [Abstract][Full Text] [Related]
11. Ultrafiltration and endotoxin removal from dialysis fluids. Di Felice A; Cappelli G; Facchini F; Tetta C; Cornia F; Aimo G; Lusvarghi E Kidney Int Suppl; 1993 Jun; 41():S201-4. PubMed ID: 8320921 [TBL] [Abstract][Full Text] [Related]
12. Pyrogen retention by highly permeable synthetic membranes during in vitro dialysis. Lonnemann G; Sereni L; Lemke HD; Tetta C Artif Organs; 2001 Dec; 25(12):951-60. PubMed ID: 11843762 [TBL] [Abstract][Full Text] [Related]
13. The effects of endotoxin-contaminated dialysate and polysulfone or cellulosic membranes on the release of TNF alpha during simulated dialysis. Arduino MJ; Bland LA; McAllister SK; Favero MS Artif Organs; 1995 Sep; 19(9):880-6. PubMed ID: 8687293 [TBL] [Abstract][Full Text] [Related]
14. Ultrafiltration using the polysulfone membrane to reduce the cytokine-inducing activity of contaminated dialysate. Lonnemann G; Schindler R Clin Nephrol; 1994 Jul; 42 Suppl 1():S37-43. PubMed ID: 7923982 [No Abstract] [Full Text] [Related]
15. New polyether sulfone dialyzers attenuate passage of cytokine-inducing substances from pseudomonas aeruginosa contaminated dialysate. Jaber BL; Gonski JA; Cendoroglo M; Balakrishnan VS; Razeghi P; Dinarello CA; Pereira BJ Blood Purif; 1998; 16(4):210-9. PubMed ID: 9736790 [TBL] [Abstract][Full Text] [Related]
16. Bacteria and endotoxin removal from bicarbonate dialysis fluids for use in conventional, high-efficiency, and high-flux hemodialysis. Oliver JC; Bland LA; Oettinger CW; Arduino MJ; Garrard M; Pegues DA; McAllister S; Moone T; Aguero S; Favero MS Artif Organs; 1992 Apr; 16(2):141-5. PubMed ID: 10078235 [TBL] [Abstract][Full Text] [Related]
17. Detection of peptidoglycan and endotoxin in dialysate, using silkworm larvae plasma and limulus amebocyte lysate methods. Tsuchida K; Takemoto Y; Yamagami S; Edney H; Niwa M; Tsuchiya M; Kishimoto T; Shaldon S Nephron; 1997; 75(4):438-43. PubMed ID: 9127331 [TBL] [Abstract][Full Text] [Related]
18. In vitro study of the transfer of cytokine-inducing substances across selected high-flux hemodialysis membranes. Evans RC; Holmes CJ Blood Purif; 1991; 9(2):92-101. PubMed ID: 1760147 [TBL] [Abstract][Full Text] [Related]
19. A method for removing interleukin-1- and tumor necrosis factor-inducing substances from bacterial cultures by ultrafiltration with polysulfone. Schindler R; Dinarello CA J Immunol Methods; 1989 Jan; 116(2):159-65. PubMed ID: 2642948 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the association between increasing membrane pore size and endotoxin permeability using a novel experimental dialysis simulation set-up. Schepers E; Glorieux G; Eloot S; Hulko M; Boschetti-de-Fierro A; Beck W; Krause B; Van Biesen W BMC Nephrol; 2018 Jan; 19(1):1. PubMed ID: 29304774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]