These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 8828912)

  • 21. Effect of nucleosides and nucleotides and the relationship between cellular adenosine 3':5'-cyclic monophosphate (cyclic AMP) and germ tube formation in Candida albicans.
    Sabie FT; Gadd GM
    Mycopathologia; 1992 Sep; 119(3):147-56. PubMed ID: 1331793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans.
    Gopal P; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial behaviour during the yeast-hypha transition of Candida albicans.
    Aoki S; Ito-Kuwa S; Nakamura Y; Masuhara T
    Microbios; 1989; 60(243):79-86. PubMed ID: 2691864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalase gene disruptant of the human pathogenic yeast Candida albicans is defective in hyphal growth, and a catalase-specific inhibitor can suppress hyphal growth of wild-type cells.
    Nakagawa Y
    Microbiol Immunol; 2008 Jan; 52(1):16-24. PubMed ID: 18352908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hemoglobin is utilized by Candida albicans in the hyphal form but not yeast form.
    Tanaka WT; Nakao N; Mikami T; Matsumoto T
    Biochem Biophys Res Commun; 1997 Mar; 232(2):350-3. PubMed ID: 9125179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serum repressing efflux pump CDR1 in Candida albicans.
    Yang YL; Lin YH; Tsao MY; Chen CG; Shih HI; Fan JC; Wang JS; Lo HJ
    BMC Mol Biol; 2006 Jul; 7():22. PubMed ID: 16839415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyphal formation of Candida albicans is controlled by electron transfer system.
    Watanabe T; Ogasawara A; Mikami T; Matsumoto T
    Biochem Biophys Res Commun; 2006 Sep; 348(1):206-11. PubMed ID: 16876761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans.
    Leito JT; Ligtenberg AJ; Nazmi K; Veerman EC
    FEMS Yeast Res; 2009 Oct; 9(7):1102-10. PubMed ID: 19799638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of phenylalanine at position 6 in glucagon's mechanism of biological action: multiple replacement analogues of glucagon.
    Azizeh BY; Ahn JM; Caspari R; Shenderovich MD; Trivedi D; Hruby VJ
    J Med Chem; 1997 Aug; 40(16):2555-62. PubMed ID: 9258362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis of Candida albicans.
    Paranjape V; Roy BG; Datta A
    J Gen Microbiol; 1990 Nov; 136(11):2149-54. PubMed ID: 2079619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth.
    Bassilana M; Hopkins J; Arkowitz RA
    Eukaryot Cell; 2005 Mar; 4(3):588-603. PubMed ID: 15755921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nutritional stress proteins in Candida albicans.
    Dabrowa N; Zeuthen ML; Howard DH
    J Gen Microbiol; 1990 Jul; 136(7):1387-91. PubMed ID: 2230722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid differentiation of Candida albicans from other Candida species using its unique germ tube formation at 39 degrees C.
    Kim D; Shin WS; Lee KH; Kim K; Young Park J; Koh CM
    Yeast; 2002 Aug; 19(11):957-62. PubMed ID: 12125052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of 12 liquid media for germ tube production of Candida albicans and C. tropicalis.
    Hilmioglu S; Ilkit M; Badak Z
    Mycoses; 2007 Jul; 50(4):282-5. PubMed ID: 17576320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation.
    Hameed S; Prasad T; Banerjee D; Chandra A; Mukhopadhyay CK; Goswami SK; Lattif AA; Chandra J; Mukherjee PK; Ghannoum MA; Prasad R
    FEMS Yeast Res; 2008 Aug; 8(5):744-55. PubMed ID: 18547332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth of Candida albicans on artificial D-glucose derivatives.
    Hrmová M; Sturdík E; Kosík M; Gemeiner P; Petrus L
    Z Allg Mikrobiol; 1983; 23(5):303-12. PubMed ID: 6353783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential chemokine response of human monocytes to yeast and hyphal forms of Candida albicans and its relation to the beta-1,6 glucan of the fungal cell wall.
    Torosantucci A; Chiani P; Cassone A
    J Leukoc Biol; 2000 Dec; 68(6):923-32. PubMed ID: 11129662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of IgY against Candida albicans and Candida spp. Adherence and Biofilm Formation.
    Fujibayashi T; Nakamura M; Tominaga A; Satoh N; Kawarai T; Narisawa N; Shinozuka O; Watanabe H; Yamazaki T; Senpuku H
    Jpn J Infect Dis; 2009 Sep; 62(5):337-42. PubMed ID: 19762981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Germ tube formation from zonal rotor fractions of Candida albicans.
    Chaffin WL; Sogin SJ
    J Bacteriol; 1976 May; 126(2):771-6. PubMed ID: 770454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.