These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 8829096)
1. Validation of a 5-minute steady state indirect calorimetry protocol for resting energy expenditure in critically ill patients. Frankenfield DC; Sarson GY; Blosser SA; Cooney RN; Smith JS J Am Coll Nutr; 1996 Aug; 15(4):397-402. PubMed ID: 8829096 [TBL] [Abstract][Full Text] [Related]
2. Effects of ventilator resetting on indirect calorimetry measurement in the critically ill surgical patient. Brandi LS; Bertolini R; Santini L; Cavani S Crit Care Med; 1999 Mar; 27(3):531-9. PubMed ID: 10199532 [TBL] [Abstract][Full Text] [Related]
3. Validation of carbon dioxide production (VCO Kagan I; Zusman O; Bendavid I; Theilla M; Cohen J; Singer P Crit Care; 2018 Aug; 22(1):186. PubMed ID: 30075796 [TBL] [Abstract][Full Text] [Related]
4. Validity of an abbreviated indirect calorimetry protocol for measurement of resting energy expenditure in mechanically ventilated and spontaneously breathing critically ill patients. Petros S; Engelmann L Intensive Care Med; 2001 Jul; 27(7):1164-8. PubMed ID: 11534564 [TBL] [Abstract][Full Text] [Related]
6. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Rehal MS; Fiskaare E; Tjäder I; Norberg Å; Rooyackers O; Wernerman J Crit Care; 2016 Mar; 20():54. PubMed ID: 26951095 [TBL] [Abstract][Full Text] [Related]
7. Accuracy of 30-minute indirect calorimetry studies in predicting 24-hour energy expenditure in mechanically ventilated, critically ill patients. Smyrnios NA; Curley FJ; Shaker KG JPEN J Parenter Enteral Nutr; 1997; 21(3):168-74. PubMed ID: 9168370 [TBL] [Abstract][Full Text] [Related]
8. Energy expenditure and gas exchange measurements in postoperative patients: thermodilution versus indirect calorimetry. Brandi LS; Grana M; Mazzanti T; Giunta F; Natali A; Ferrannini E Crit Care Med; 1992 Sep; 20(9):1273-83. PubMed ID: 1521442 [TBL] [Abstract][Full Text] [Related]
10. Can Vco Mouzaki M; Schwartz SM; Mtaweh H; La Rotta G; Mah K; Herridge J; Van Arsdell G; Parshuram CS; Floh AA JPEN J Parenter Enteral Nutr; 2017 May; 41(4):619-624. PubMed ID: 26950946 [TBL] [Abstract][Full Text] [Related]
11. Resting energy expenditure by indirect calorimetry versus the ventilator-VCO Koekkoek WAC; Xiaochen G; van Dijk D; van Zanten ARH Clin Nutr ESPEN; 2020 Oct; 39():137-143. PubMed ID: 32859307 [TBL] [Abstract][Full Text] [Related]
12. A pocket-sized metabolic analyzer for assessment of resting energy expenditure. Zhao D; Xian X; Terrera M; Krishnan R; Miller D; Bridgeman D; Tao K; Zhang L; Tsow F; Forzani ES; Tao N Clin Nutr; 2014 Apr; 33(2):341-7. PubMed ID: 23827182 [TBL] [Abstract][Full Text] [Related]
13. Validation of ventilator-derived VCO Kerklaan D; Augustus ME; Hulst JM; van Rosmalen J; Verbruggen SCAT; Joosten KFM Clin Nutr; 2017 Apr; 36(2):452-457. PubMed ID: 26803170 [TBL] [Abstract][Full Text] [Related]
14. Effects of gas leak around endotracheal tubes on indirect calorimetry measurement. Dietrich KA; Romero MD; Conrad SA JPEN J Parenter Enteral Nutr; 1990; 14(4):408-13. PubMed ID: 2119449 [TBL] [Abstract][Full Text] [Related]
15. Methods to validate the accuracy of an indirect calorimeter in the in-vitro setting. Oshima T; Ragusa M; Graf S; Dupertuis YM; Heidegger CP; Pichard C Clin Nutr ESPEN; 2017 Dec; 22():71-75. PubMed ID: 29415838 [TBL] [Abstract][Full Text] [Related]
16. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Stapel SN; de Grooth HJ; Alimohamad H; Elbers PW; Girbes AR; Weijs PJ; Oudemans-van Straaten HM Crit Care; 2015 Oct; 19():370. PubMed ID: 26494245 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of abbreviated indirect calorimetry protocols for energy expenditure measurement in critically ill children. Smallwood CD; Mehta NM JPEN J Parenter Enteral Nutr; 2012 Nov; 36(6):693-9. PubMed ID: 22510266 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of accuracy and reliability of indirect calorimetry for the measurement of resting energy expenditure in healthy dogs. O'Toole E; McDonell WN; Wilson BA; Mathews KA; Miller CW; Sears WC Am J Vet Res; 2001 Nov; 62(11):1761-7. PubMed ID: 11703021 [TBL] [Abstract][Full Text] [Related]
19. Gas exchange measurement during pediatric mechanical ventilation--agreement between gas sampling at the airway and the ventilator exhaust. Smallwood CD; Mehta NM Clin Nutr; 2013 Dec; 32(6):988-92. PubMed ID: 23587734 [TBL] [Abstract][Full Text] [Related]
20. A reduced abbreviated indirect calorimetry protocol is clinically acceptable for use in spontaneously breathing patients with traumatic brain injury. McEvoy C; Cooke SR; Young IS Nutr Clin Pract; 2009; 24(4):513-9. PubMed ID: 19407141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]