BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8829615)

  • 1. Comparative analysis of the secondary structural motifs of P450BM-3 and the regions located upstream of the calmodulin-binding domain in the nitric oxide synthases.
    Uvarov VYu ; Lyashenko AA; Zimin AG
    Biochem Mol Biol Int; 1996 Mar; 38(3):553-8. PubMed ID: 8829615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108.
    de Groot MJ; Vermeulen NP; Kramer JD; van Acker FA; Donné-Op den Kelder GM
    Chem Res Toxicol; 1996; 9(7):1079-91. PubMed ID: 8902262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2007 Jul; 46(28):8288-300. PubMed ID: 17580957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs.
    Spratt DE; Newman E; Mosher J; Ghosh DK; Salerno JC; Guillemette JG
    FEBS J; 2006 Apr; 273(8):1759-71. PubMed ID: 16623711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain.
    Iyanagi T
    Biochem Biophys Res Commun; 2005 Dec; 338(1):520-8. PubMed ID: 16125667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site analysis of P450 enzymes: comparative magnetic circular dichroism spectroscopy.
    Andersson LA; Johnson AK; Peterson JA
    Arch Biochem Biophys; 1997 Sep; 345(1):79-87. PubMed ID: 9281314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral properties of the oxyferrous complex of the heme domain of cytochrome P450 BM-3 (CYP102).
    Bec N; Anzenbacher P; Anzenbacherová E; Gorren AC; Munro AW; Lange R
    Biochem Biophys Res Commun; 1999 Dec; 266(1):187-9. PubMed ID: 10581187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of substrates at the surface of P450s can greatly enhance substrate potency.
    Hegde A; Haines DC; Bondlela M; Chen B; Schaffer N; Tomchick DR; Machius M; Nguyen H; Chowdhary PK; Stewart L; Lopez C; Peterson JA
    Biochemistry; 2007 Dec; 46(49):14010-7. PubMed ID: 18004886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3.
    Kitazume T; Haines DC; Estabrook RW; Chen B; Peterson JA
    Biochemistry; 2007 Oct; 46(42):11892-901. PubMed ID: 17902705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Libraries of hybrid proteins from distantly related sequences.
    Sieber V; Martinez CA; Arnold FH
    Nat Biotechnol; 2001 May; 19(5):456-60. PubMed ID: 11329016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase.
    Knight K; Scrutton NS
    Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductase domain of Drosophila melanogaster nitric-oxide synthase: redox transformations, regulation, and similarity to mammalian homologues.
    Ray SS; Sengupta R; Tiso M; Haque MM; Sahoo R; Konas DW; Aulak K; Regulski M; Tully T; Stuehr DJ; Ghosh S
    Biochemistry; 2007 Oct; 46(42):11865-73. PubMed ID: 17900149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of the fatty acid hydroxylase activity of cytochrome P450BM-3 utilizing its functional domains.
    Sevrioukova I; Truan G; Peterson JA
    Arch Biochem Biophys; 1997 Apr; 340(2):231-8. PubMed ID: 9143326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium.
    Chen HC; Swenson RP
    Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function studies on nitric oxide synthases.
    Li H; Poulos TL
    J Inorg Biochem; 2005 Jan; 99(1):293-305. PubMed ID: 15598508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Nitric oxide synthase, typical flavohemoproteins and their complicated enzymology].
    Jáchymová M; Masters BS; Horký K; Zima T; Martásek P
    Cas Lek Cesk; 2006; 145(7):526-31. PubMed ID: 16921779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2008 Nov; 47(46):12006-17. PubMed ID: 18947187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties.
    Fasan R; Chen MM; Crook NC; Arnold FH
    Angew Chem Int Ed Engl; 2007; 46(44):8414-8. PubMed ID: 17886313
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.