These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8829819)

  • 1. Hypertension from carotid occlusion decreases renal papillary plasma flow, hypotension from hemorrhage increases it, an autoregulatory paradox.
    Ganguli M; Tobian L
    Hypertens Res; 1996 Mar; 19(1):17-22. PubMed ID: 8829819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute prostaglandin reduction with indomethacin and chronic prostaglandin reduction with an essential fatty acid deficient diet both decrease plasma flow to the renal papilla in the rat.
    Ganguli M; Tobian L; Ferris T; Johnson MA
    Prostaglandins; 1989 Jul; 38(1):3-19. PubMed ID: 2748921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nitrendipine on autoregulation of perfusion in the cortex and papilla of kidneys from Wistar and stroke prone spontaneously hypertensive rats.
    Huang C; Davis G; Johns EJ
    Br J Pharmacol; 1994 Jan; 111(1):111-6. PubMed ID: 8012687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral blood flow autoregulation following subarachnoid hemorrhage in rats: chronic vasospasm shifts the upper and lower limits of the autoregulatory range toward higher blood pressures.
    Yamamoto S; Nishizawa S; Tsukada H; Kakiuchi T; Yokoyama T; Ryu H; Uemura K
    Brain Res; 1998 Jan; 782(1-2):194-201. PubMed ID: 9519263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous opioid mechanisms in hypothalamic blood flow autoregulation during haemorrhagic hypotension and angiotensin-induced acute hypertension in cats.
    Komjáti K; Velkei-Harvich M; Tóth J; Dallos G; Nyáry I; Sándor P
    Acta Physiol Scand; 1996 May; 157(1):53-61. PubMed ID: 8735654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired autoregulation of renal blood flow in the fawn-hooded rat.
    Van Dokkum RP; Alonso-Galicia M; Provoost AP; Jacob HJ; Roman RJ
    Am J Physiol; 1999 Jan; 276(1):R189-96. PubMed ID: 9887194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal cortical and medullary microvascular blood flow autoregulation in rat.
    Harrison-Bernard LM; Navar LG
    Kidney Int Suppl; 1996 Dec; 57():S23-9. PubMed ID: 8941918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of volume expansion on papillary blood flow and sodium excretion.
    Fenoy FJ; Roman RJ
    Am J Physiol; 1991 Jun; 260(6 Pt 2):F813-22. PubMed ID: 2058703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in arterioles, arteries, and local perfusion of the brain stem during hemorrhagic hypertension.
    Toyoda K; Fujii K; Ibayashi S; Sadoshima S; Fujishima M
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1350-4. PubMed ID: 8967375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoregulation of blood flow in renal medulla of the rat: no role for angiotensin II.
    Cupples WA; Marsh DJ
    Can J Physiol Pharmacol; 1988 Jun; 66(6):833-6. PubMed ID: 3048619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of hemorrhagic hypotension on total and local renal blood flow in the rat.
    Hope A; Tyssebotn I; Clausen G
    Ren Physiol; 1983; 6(1):43-52. PubMed ID: 6836170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability in the magnitude of the cerebral blood flow response and the shape of the cerebral blood flow-pressure autoregulation curve during hypotension in normal rats [corrected].
    Jones SC; Radinsky CR; Furlan AJ; Chyatte D; Qu Y; Easley KA; Perez-Trepichio AD
    Anesthesiology; 2002 Aug; 97(2):488-96. PubMed ID: 12151941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal sympathetic nerves modulate erythropoietin plasma levels after transient hemorrhage in rats.
    Ditting T; Hilgers KF; Stetter A; Linz P; Schönweiss C; Veelken R
    Am J Physiol Renal Physiol; 2007 Oct; 293(4):F1099-106. PubMed ID: 17634394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelium modulates renal blood flow but not autoregulation.
    Beierwaltes WH; Sigmon DH; Carretero OA
    Am J Physiol; 1992 Jun; 262(6 Pt 2):F943-9. PubMed ID: 1621818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced renal papillary plasma flow in non-ascitic cirrhotic rats.
    Atuchá NM; Quesada T; Garcia-Estañ J
    Clin Sci (Lond); 1993 Aug; 85(2):139-45. PubMed ID: 8403782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct determination of vasa recta blood flow in the rat renal papilla.
    Holliger C; Lemley KV; Schmitt SL; Thomas FC; Robertson CR; Jamison RL
    Circ Res; 1983 Sep; 53(3):401-13. PubMed ID: 6883657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension.
    Hudetz AG; Fehér G; Weigle CG; Knuese DE; Kampine JP
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2202-10. PubMed ID: 7611470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-dependent tissue bleeding in cutaneous flap during nitroprusside infusion in the dog.
    Liu DM; Yeh FC; Chen HI
    Chin J Physiol; 1989; 32(2):93-101. PubMed ID: 2638618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-diuresis in volume-expanded rats. Cortical and medullary hemodynamics.
    Roman RJ; Cowley AW; Garcia-Estañ J; Lombard JH
    Hypertension; 1988 Aug; 12(2):168-76. PubMed ID: 3410525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low renal papillary plasma flow in both Dahl and Kyoto rats with spontaneous hypertension.
    Ganguli M; Tobian L; Dahl L
    Circ Res; 1976 Sep; 39(3):337-41. PubMed ID: 954162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.