These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 8829819)
1. Hypertension from carotid occlusion decreases renal papillary plasma flow, hypotension from hemorrhage increases it, an autoregulatory paradox. Ganguli M; Tobian L Hypertens Res; 1996 Mar; 19(1):17-22. PubMed ID: 8829819 [TBL] [Abstract][Full Text] [Related]
2. Acute prostaglandin reduction with indomethacin and chronic prostaglandin reduction with an essential fatty acid deficient diet both decrease plasma flow to the renal papilla in the rat. Ganguli M; Tobian L; Ferris T; Johnson MA Prostaglandins; 1989 Jul; 38(1):3-19. PubMed ID: 2748921 [TBL] [Abstract][Full Text] [Related]
3. Effect of nitrendipine on autoregulation of perfusion in the cortex and papilla of kidneys from Wistar and stroke prone spontaneously hypertensive rats. Huang C; Davis G; Johns EJ Br J Pharmacol; 1994 Jan; 111(1):111-6. PubMed ID: 8012687 [TBL] [Abstract][Full Text] [Related]
4. Cerebral blood flow autoregulation following subarachnoid hemorrhage in rats: chronic vasospasm shifts the upper and lower limits of the autoregulatory range toward higher blood pressures. Yamamoto S; Nishizawa S; Tsukada H; Kakiuchi T; Yokoyama T; Ryu H; Uemura K Brain Res; 1998 Jan; 782(1-2):194-201. PubMed ID: 9519263 [TBL] [Abstract][Full Text] [Related]
5. Endogenous opioid mechanisms in hypothalamic blood flow autoregulation during haemorrhagic hypotension and angiotensin-induced acute hypertension in cats. Komjáti K; Velkei-Harvich M; Tóth J; Dallos G; Nyáry I; Sándor P Acta Physiol Scand; 1996 May; 157(1):53-61. PubMed ID: 8735654 [TBL] [Abstract][Full Text] [Related]
6. Impaired autoregulation of renal blood flow in the fawn-hooded rat. Van Dokkum RP; Alonso-Galicia M; Provoost AP; Jacob HJ; Roman RJ Am J Physiol; 1999 Jan; 276(1):R189-96. PubMed ID: 9887194 [TBL] [Abstract][Full Text] [Related]
7. Renal cortical and medullary microvascular blood flow autoregulation in rat. Harrison-Bernard LM; Navar LG Kidney Int Suppl; 1996 Dec; 57():S23-9. PubMed ID: 8941918 [TBL] [Abstract][Full Text] [Related]
8. Effect of volume expansion on papillary blood flow and sodium excretion. Fenoy FJ; Roman RJ Am J Physiol; 1991 Jun; 260(6 Pt 2):F813-22. PubMed ID: 2058703 [TBL] [Abstract][Full Text] [Related]
9. Changes in arterioles, arteries, and local perfusion of the brain stem during hemorrhagic hypertension. Toyoda K; Fujii K; Ibayashi S; Sadoshima S; Fujishima M Am J Physiol; 1996 Apr; 270(4 Pt 2):H1350-4. PubMed ID: 8967375 [TBL] [Abstract][Full Text] [Related]
10. Autoregulation of blood flow in renal medulla of the rat: no role for angiotensin II. Cupples WA; Marsh DJ Can J Physiol Pharmacol; 1988 Jun; 66(6):833-6. PubMed ID: 3048619 [TBL] [Abstract][Full Text] [Related]
11. The effect of hemorrhagic hypotension on total and local renal blood flow in the rat. Hope A; Tyssebotn I; Clausen G Ren Physiol; 1983; 6(1):43-52. PubMed ID: 6836170 [TBL] [Abstract][Full Text] [Related]
12. Variability in the magnitude of the cerebral blood flow response and the shape of the cerebral blood flow-pressure autoregulation curve during hypotension in normal rats [corrected]. Jones SC; Radinsky CR; Furlan AJ; Chyatte D; Qu Y; Easley KA; Perez-Trepichio AD Anesthesiology; 2002 Aug; 97(2):488-96. PubMed ID: 12151941 [TBL] [Abstract][Full Text] [Related]
13. Renal sympathetic nerves modulate erythropoietin plasma levels after transient hemorrhage in rats. Ditting T; Hilgers KF; Stetter A; Linz P; Schönweiss C; Veelken R Am J Physiol Renal Physiol; 2007 Oct; 293(4):F1099-106. PubMed ID: 17634394 [TBL] [Abstract][Full Text] [Related]
14. Endothelium modulates renal blood flow but not autoregulation. Beierwaltes WH; Sigmon DH; Carretero OA Am J Physiol; 1992 Jun; 262(6 Pt 2):F943-9. PubMed ID: 1621818 [TBL] [Abstract][Full Text] [Related]