These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8829819)

  • 21. Renal cortical and papillary blood flow in spontaneously hypertensive rats.
    Roman RJ; Kaldunski ML
    Hypertension; 1988 Jun; 11(6 Pt 2):657-63. PubMed ID: 3391676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of renal papillae in the regulation of sodium excretion during acute elevation of renal perfusion pressure in the rat.
    Chen PS; Caldwell RM; Hsu CH
    Hypertension; 1984; 6(6 Pt 1):893-8. PubMed ID: 6519746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Haemodynamic responses to hypotensive haemorrhage in conscious sheep with emphasis on renal and femoral blood flow.
    Gunnarsson U; Hjelmqvist H; Rundgren M
    Exp Physiol; 1994 Nov; 79(6):957-65. PubMed ID: 7873163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of nitric oxide in the cerebral circulation during hypotension after hemorrhage, ganglionic blockade and diazoxide in awake goats.
    Diéguez G; Fernández N; Sánchez MA; Martínez MA; García-Villalón AL; Monge L; Gómez B
    Brain Res; 1999 Dec; 851(1-2):133-40. PubMed ID: 10642836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resetting of renal blood autoregulation during acute blood pressure reduction in hypertensive rats.
    Iversen BM; Kvam FI; Matre K; Ofstad J
    Am J Physiol; 1998 Aug; 275(2):R343-9. PubMed ID: 9688667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hemodynamic sequelae of ventricular tachyarrhythmias on cerebral blood flow.
    Kastrup A; Hagendorff A; Dettmers C; Lüderitz B; Hartmann A
    Neurol Res; 1998 Sep; 20(6):549-54. PubMed ID: 9713847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of kinins and angiotensin II in the renal hemodynamic response to captopril.
    Mattson DL; Roman RJ
    Am J Physiol; 1991 May; 260(5 Pt 2):F670-9. PubMed ID: 2035654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superoxide dismustase mimetic tempol decreases blood pressure by increasing renal medullary blood flow in hyperinsulinemic-hypertensive rats.
    Onuma S; Nakanishi K
    Metabolism; 2004 Oct; 53(10):1305-8. PubMed ID: 15375786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences between cerebral and cerebellar autoregulation during progressive hypotension in rats.
    Merzeau S; Preckel MP; Fromy B; Lefthériotis G; Saumet JL
    Neurosci Lett; 2000 Feb; 280(2):103-6. PubMed ID: 10686388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inner medullary blood flow in postischemic acute renal failure in the rat.
    Yagil Y; Miyamoto M; Jamison RL
    Am J Physiol; 1989 Mar; 256(3 Pt 2):F456-61. PubMed ID: 2923224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of prostaglandins on papillary blood flow and pressure-natriuretic response.
    Roman RJ; Lianos E
    Hypertension; 1990 Jan; 15(1):29-35. PubMed ID: 2295512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response of descending vasa recta to luminal pressure.
    Zhang Z; Pallone TL
    Am J Physiol Renal Physiol; 2004 Sep; 287(3):F535-42. PubMed ID: 15126249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laser-Doppler determination of papillary blood flow in young and adult rats.
    Roman RJ; Smits C
    Am J Physiol; 1986 Jul; 251(1 Pt 2):F115-24. PubMed ID: 3728681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the renal medulla in volume and arterial pressure regulation.
    Cowley AW
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R1-15. PubMed ID: 9249526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autoregulation in vasa recta of the rat kidney.
    Cohen HJ; Marsh DJ; Kayser B
    Am J Physiol; 1983 Jul; 245(1):F32-40. PubMed ID: 6869536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerebral blood flow and interstitial fluid adenosine during hemorrhagic hypotension.
    Van Wylen DG; Park TS; Rubio R; Berne RM
    Am J Physiol; 1988 Nov; 255(5 Pt 2):H1211-8. PubMed ID: 3142277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of kinins in the control of renal papillary blood flow, pressure natriuresis, and arterial pressure.
    Tornel J; Madrid MI; García-Salom M; Wirth KJ; Fenoy FJ
    Circ Res; 2000 Mar; 86(5):589-95. PubMed ID: 10720421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rat renal papillary release of hypotensive substances in vitro.
    Ma YH; Dunham EW
    J Hypertens; 1991 Aug; 9(8):761-70. PubMed ID: 1655886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resistance of descending vasa recta to the transport of water.
    Pallone TL; Work J; Jamison RL
    Am J Physiol; 1990 Oct; 259(4 Pt 2):F688-97. PubMed ID: 1699435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenylephrine ameliorates cerebral cytotoxic edema and reduces cerebral infarction volume in a rat model of complete unilateral carotid artery occlusion with severe hypotension.
    Ishikawa S; Ito H; Yokoyama K; Makita K
    Anesth Analg; 2009 May; 108(5):1631-7. PubMed ID: 19372348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.