These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 8830052)

  • 21. Modification of a ribonuclease from Rhizopus sp. with 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide p-toluenesulfonate.
    Sanda A; Takizawa Y; Iwama M; Irie M
    J Biochem; 1985 Jul; 98(1):125-32. PubMed ID: 3862665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On a salmon (Oncorhynchus [corrected] keta) liver RNase, belonging to RNase T2 family: primary structure and some properties.
    Suzuki R; Kanno S; Ogawa Y; Iwama M; Tsuji T; Ohgi K; Irie M
    Biosci Biotechnol Biochem; 2005 Feb; 69(2):343-52. PubMed ID: 15725660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical modification of tryptophan residues in ribonuclease from a Rhizopus sp.
    Sanda A; Irie M
    J Biochem; 1980 Apr; 87(4):1079-87. PubMed ID: 7390980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase.
    Tibbitts TT; Murphy JE; Kantrowitz ER
    J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ribonucleases from T2 family.
    Deshpande RA; Shankar V
    Crit Rev Microbiol; 2002; 28(2):79-122. PubMed ID: 12109772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural determinants of the uridine-preferring specificity of RNase PL3.
    Vicentini AM; Kote-Jarai Z; Hofsteenge J
    Biochemistry; 1996 Jul; 35(28):9128-32. PubMed ID: 8703917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation, characterization, and primary structure of a base non-specific and adenylic acid preferential ribonuclease with higher specific activity from Trichoderma viride.
    Inada Y; Watanabe H; Ohgi K; Irie M
    J Biochem; 1991 Dec; 110(6):896-904. PubMed ID: 1794979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New sequence-specific human ribonuclease: purification and properties.
    Przewlocki G; Lipecka J; Edelman A; Przykorska A
    Nucleic Acids Res; 1998 Sep; 26(17):4047-55. PubMed ID: 9705518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of two forms of base non-specific and adenylic acid preferential ribonuclease from Aspergillus saitoi.
    Ohgi K; Watanabe H; Takizawa M; Kimura Y; Matsutani K; Kakinuma E; Irie M
    J Biochem; 1983 Sep; 94(3):767-75. PubMed ID: 6417118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The prosequence of Rhizopus niveus aspartic proteinase-I supports correct folding and secretion of its mature part in Saccharomyces cerevisiae.
    Fukuda R; Horiuchi H; Ohta A; Takagi M
    J Biol Chem; 1994 Apr; 269(13):9556-61. PubMed ID: 8144542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of RNase HII substrate recognition using RNase HII-argonaute chimaeric enzymes from Pyrococcus furiosus.
    Kitamura S; Fujishima K; Sato A; Tsuchiya D; Tomita M; Kanai A
    Biochem J; 2010 Feb; 426(3):337-44. PubMed ID: 20047562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and sequencing of a genomic clone encoding aspartic proteinase of Rhizopus niveus.
    Horiuchi H; Yanai K; Okazaki T; Takagi M; Yano K
    J Bacteriol; 1988 Jan; 170(1):272-8. PubMed ID: 3275615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues.
    Sorrentino S; Naddeo M; Russo A; D'Alessio G
    Biochemistry; 2003 Sep; 42(34):10182-90. PubMed ID: 12939146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and activity of the only human RNase T2.
    Thorn A; Steinfeld R; Ziegenbein M; Grapp M; Hsiao HH; Urlaub H; Sheldrick GM; Gärtner J; Krätzner R
    Nucleic Acids Res; 2012 Sep; 40(17):8733-42. PubMed ID: 22735700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligoinosinic acids and poly I.
    Watanabe H; Ando E; Ohgi K; Irie M
    J Biochem; 1985 Nov; 98(5):1239-45. PubMed ID: 3936847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A potential allosteric subsite generated by domain swapping in bovine seminal ribonuclease.
    Vitagliano L; Adinolfi S; Sica F; Merlino A; Zagari A; Mazzarella L
    J Mol Biol; 1999 Oct; 293(3):569-77. PubMed ID: 10543951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium-dependent endoribonuclease of Trypanosoma brucei has a base-preferential affinity to adenylate.
    Gbenle GO
    Biochem Int; 1985 Feb; 10(2):241-50. PubMed ID: 2581576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies.
    Vicentini AM; Hemmings BA; Hofsteenge J
    Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broad-specificity endoribonucleases and mRNA degradation in Escherichia coli.
    Srivastava SK; Cannistraro VJ; Kennell D
    J Bacteriol; 1992 Jan; 174(1):56-62. PubMed ID: 1309522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Primary structure of a base non-specific and adenylic acid preferential ribonuclease from Aspergillus saitoi.
    Watanabe H; Naitoh A; Suyama Y; Inokuchi N; Shimada H; Koyama T; Ohgi K; Irie M
    J Biochem; 1990 Aug; 108(2):303-10. PubMed ID: 2229029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.