These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 8830281)

  • 41. Neuroprotective nitric oxide synthase inhibitor reduces intracellular calcium accumulation following transient global ischemia in the gerbil.
    Kohno K; Higuchi T; Ohta S; Kohno K; Kumon Y; Sakaki S
    Neurosci Lett; 1997 Mar; 224(1):17-20. PubMed ID: 9132680
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunohistochemical determination of calcium-calmodulin binding predicts neuronal damage after global ischemia.
    Picone CM; Grotta JC; Earls R; Strong R; Dedman J
    J Cereb Blood Flow Metab; 1989 Dec; 9(6):805-11. PubMed ID: 2511211
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diverse mechanisms of neuronal protection by nimodipine in experimental rabbit brain ischemia.
    Lazarewicz JW; Pluta R; Puka M; Salinska E
    Stroke; 1990 Dec; 21(12 Suppl):IV108-10. PubMed ID: 1979699
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ischemia-induced changes in cerebral mitochondrial free fatty acids, phospholipids, and respiration in the rat.
    Sun D; Gilboe DD
    J Neurochem; 1994 May; 62(5):1921-8. PubMed ID: 8158140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Na(+)/Ca(2+) exchanger 2 is neuroprotective by exporting Ca(2+) during a transient focal cerebral ischemia in the mouse.
    Jeon D; Chu K; Jung KH; Kim M; Yoon BW; Lee CJ; Oh U; Shin HS
    Cell Calcium; 2008 May; 43(5):482-91. PubMed ID: 17884163
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia.
    Ekholm A; Katsura K; Kristián T; Liu M; Folbergrová J; Siesjö BK
    Brain Res; 1993 Feb; 604(1-2):185-91. PubMed ID: 8457847
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitric oxide synthase inhibition and extracellular glutamate concentration after cerebral ischemia/reperfusion.
    Zhang J; Benveniste H; Klitzman B; Piantadosi CA
    Stroke; 1995 Feb; 26(2):298-304. PubMed ID: 7530389
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in cerebral energy metabolism and calcium levels in relation to delayed neuronal death after ischemia.
    Hashimoto K; Kikuchi H; Ishikawa M; Kobayashi S
    Neurosci Lett; 1992 Mar; 137(2):165-8. PubMed ID: 1584457
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine.
    Rosenthal RE; Hamud F; Fiskum G; Varghese PJ; Sharpe S
    J Cereb Blood Flow Metab; 1987 Dec; 7(6):752-8. PubMed ID: 3693430
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selective neuronal vulnerability following transient cerebral ischemia in the gerbil: distribution and time course.
    Araki T; Kato H; Kogure K
    Acta Neurol Scand; 1989 Dec; 80(6):548-53. PubMed ID: 2618582
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose.
    Mattson MP; Zhang Y; Bose S
    Exp Neurol; 1993 May; 121(1):1-13. PubMed ID: 8495704
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intracellular calcium accumulation during the evolution of hypoxic-ischemic brain damage in the immature rat.
    Vannucci RC; Brucklacher RM; Vannucci SJ
    Brain Res Dev Brain Res; 2001 Jan; 126(1):117-20. PubMed ID: 11172893
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of post-ischemic hypothermia on the neuronal injury and brain metabolism after forebrain ischemia in the rat.
    Chen H; Chopp M; Vande Linde AM; Dereski MO; Garcia JH; Welch KM
    J Neurol Sci; 1992 Feb; 107(2):191-8. PubMed ID: 1564517
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of mitochondria in ischemic cell injury and in regulation of intracellular calcium.
    Fiskum G
    Am J Emerg Med; 1983 Sep; 1(2):147-53. PubMed ID: 6680614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of prolonged hyperventilation on ischemic injury of neurons after global brain ischemia in the dog.
    Fercáková A; Vanický I; Marsala M; Marsala J
    J Hirnforsch; 1995; 36(3):297-304. PubMed ID: 7560902
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of 5-minute ischemia on regional pH and energy state of the gerbil brain: relation to selective vulnerability of the hippocampus.
    Munekata K; Hossmann KA
    Stroke; 1987; 18(2):412-7. PubMed ID: 3564098
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial function in cerebral ischemia and hypoxia: comparison of inhibitory and adaptive responses.
    Mela L
    Neurol Res; 1979; 1(1):51-63. PubMed ID: 233475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition of cyclic AMP-dependent protein kinase in the acute phase of focal cerebral ischemia in the rat.
    Tanaka K; Nogawa S; Nagata E; Suzuki S; Dembo T; Kosakai A; Fukuuchi Y
    Neuroscience; 1999; 94(2):361-71. PubMed ID: 10579200
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes in proliferating cell nuclear antigen, a protein involved in DNA repair, in vulnerable hippocampal neurons following global cerebral ischemia.
    Tomasevic G; Kamme F; Wieloch T
    Brain Res Mol Brain Res; 1998 Oct; 60(2):168-76. PubMed ID: 9757027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Cerebral ischemia and neuronal death].
    Kirino T
    No To Hattatsu; 1994 Mar; 26(2):130-5. PubMed ID: 8136185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.