These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 8830708)
1. A two-component response regulator, gltR, is required for glucose transport activity in Pseudomonas aeruginosa PAO1. Sage AE; Proctor WD; Phibbs PV J Bacteriol; 1996 Oct; 178(20):6064-6. PubMed ID: 8830708 [TBL] [Abstract][Full Text] [Related]
2. GtrS and GltR form a two-component system: the central role of 2-ketogluconate in the expression of exotoxin A and glucose catabolic enzymes in Pseudomonas aeruginosa. Daddaoua A; Molina-Santiago C; de la Torre J; Krell T; Ramos JL Nucleic Acids Res; 2014 Jul; 42(12):7654-63. PubMed ID: 24920832 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of pseudomonas aeruginosa. Adewoye LO; Worobec EA Gene; 2000 Aug; 253(2):323-30. PubMed ID: 10940570 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. Brint JM; Ohman DE J Bacteriol; 1995 Dec; 177(24):7155-63. PubMed ID: 8522523 [TBL] [Abstract][Full Text] [Related]
5. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Wang J; Mushegian A; Lory S; Jin S Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10434-9. PubMed ID: 8816818 [TBL] [Abstract][Full Text] [Related]
6. Regulation of ornithine utilization in Pseudomonas aeruginosa (PAO1) is mediated by a transcriptional regulator, OruR. Hebert MD; Houghton JE J Bacteriol; 1997 Dec; 179(24):7834-42. PubMed ID: 9401045 [TBL] [Abstract][Full Text] [Related]
7. Functional equivalence of Escherichia coli sigma E and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. Yu H; Schurr MJ; Deretic V J Bacteriol; 1995 Jun; 177(11):3259-68. PubMed ID: 7768826 [TBL] [Abstract][Full Text] [Related]
8. Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa. Daddaoua A; Corral-Lugo A; Ramos JL; Krell T Environ Microbiol; 2017 Sep; 19(9):3721-3733. PubMed ID: 28752954 [TBL] [Abstract][Full Text] [Related]
9. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa. Visca P; Ciervo A; Orsi N J Bacteriol; 1994 Feb; 176(4):1128-40. PubMed ID: 8106324 [TBL] [Abstract][Full Text] [Related]
10. The Pseudomonas aeruginosa devB/SOL homolog, pgl, is a member of the hex regulon and encodes 6-phosphogluconolactonase. Hager PW; Calfee MW; Phibbs PV J Bacteriol; 2000 Jul; 182(14):3934-41. PubMed ID: 10869070 [TBL] [Abstract][Full Text] [Related]
11. Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. Yu H; Mudd M; Boucher JC; Schurr MJ; Deretic V J Bacteriol; 1997 Jan; 179(1):187-93. PubMed ID: 8981997 [TBL] [Abstract][Full Text] [Related]
12. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Ochsner UA; Vasil ML Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4409-14. PubMed ID: 8633080 [TBL] [Abstract][Full Text] [Related]
13. Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. DeVries CA; Ohman DE J Bacteriol; 1994 Nov; 176(21):6677-87. PubMed ID: 7961421 [TBL] [Abstract][Full Text] [Related]
14. Glucose-Binding of Periplasmic Protein GltB Activates GtrS-GltR Two-Component System in Xu C; Cao Q; Lan L Microorganisms; 2021 Feb; 9(2):. PubMed ID: 33670077 [TBL] [Abstract][Full Text] [Related]
15. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. Lizewski SE; Schurr JR; Jackson DW; Frisk A; Carterson AJ; Schurr MJ J Bacteriol; 2004 Sep; 186(17):5672-84. PubMed ID: 15317771 [TBL] [Abstract][Full Text] [Related]
16. A novel host-responsive sensor mediates virulence and type III secretion during Pseudomonas aeruginosa-host cell interactions. O'Callaghan J; Reen FJ; Adams C; Casey PG; Gahan CGM; O'Gara F Microbiology (Reading); 2012 Apr; 158(Pt 4):1057-1070. PubMed ID: 22262100 [TBL] [Abstract][Full Text] [Related]
17. An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels. Hassett DJ; Howell ML; Ochsner UA; Vasil ML; Johnson Z; Dean GE J Bacteriol; 1997 Mar; 179(5):1452-9. PubMed ID: 9045799 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Ochsner UA; Koch AK; Fiechter A; Reiser J J Bacteriol; 1994 Apr; 176(7):2044-54. PubMed ID: 8144472 [TBL] [Abstract][Full Text] [Related]
19. Identification of XcpZ domains required for assembly of the secreton of Pseudomonas aeruginosa. Robert V; Hayes F; Lazdunski A; Michel GP J Bacteriol; 2002 Mar; 184(6):1779-82. PubMed ID: 11872731 [TBL] [Abstract][Full Text] [Related]
20. Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. Heinrichs DE; Poole K J Bacteriol; 1993 Sep; 175(18):5882-9. PubMed ID: 8397186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]