BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8830757)

  • 1. Atmospheric dispersion and deposition of 131I released from the Hanford Site.
    Ramsdell JV; Simonen CA; Burk KW; Stage SA
    Health Phys; 1996 Oct; 71(4):568-77. PubMed ID: 8830757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of radionuclide releases from the Hanford Site, 1944-1972.
    Heeb CM; Gydesen SP; Simpson JC; Bates DJ
    Health Phys; 1996 Oct; 71(4):545-55. PubMed ID: 8830755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing prediction capabilities of an 131I terrestrial transport model by using measurements collected at the Hanford nuclear facility.
    Apostoaei AI
    Health Phys; 2005 May; 88(5):439-58. PubMed ID: 15824593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hanford Environmental Dose Reconstruction Project--an overview.
    Shipler DB; Napier BA; Farris WT; Freshley MD
    Health Phys; 1996 Oct; 71(4):532-44. PubMed ID: 8830754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing historical food production and consumption data for 131I dose estimates: the Hanford experience.
    Anderson DM; Marsh TL; Deonigi DA
    Health Phys; 1996 Oct; 71(4):578-87. PubMed ID: 8830758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A re-evaluation of the 131I atmospheric releases from the Hanford site.
    Napier BA
    Health Phys; 2002 Aug; 83(2):204-26. PubMed ID: 12132709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RECONSTRUCTION OF THE RADIOACTIVE CONTAMINATION OF THE TERRITORY OF UKRAINE BY IODINE-131 DURING INITIAL PERIOD OF THE CHORNOBYL ACCIDENT USING THE RESULTS FROM NUMERICAL MODEL WRF.
    Talerko MM; Lev TD; Drozdovitch VV; Masiuk SV
    Probl Radiac Med Radiobiol; 2020 Dec; 25():285-299. PubMed ID: 33361841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation doses from Hanford Site releases to the atmosphere and the Columbia River.
    Farris WT; Napier BA; Ikenberry TA; Shipler DB
    Health Phys; 1996 Oct; 71(4):588-601. PubMed ID: 8830759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A radioiodine speciation, deposition, and dispersion model with uncertainty propagation for the Oak Ridge dose reconstruction.
    Nair SK; Apostoaei AI; Hoffman FO
    Health Phys; 2000 Apr; 78(4):394-413. PubMed ID: 10749523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of the uncertainty in air concentration predictions using Hanford field data.
    Miller CW; Fields DE; Cotter SJ
    Health Phys; 1988 Aug; 55(2):443-50. PubMed ID: 3410717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty of historical measurements of 131I in Hanford-area vegetation.
    Gilbert RO; Mart EI; Denham DH; Strenge DL; Miley TB
    Health Phys; 1996 Feb; 70(2):160-70. PubMed ID: 8567282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-range atmospheric dispersion modelling. Intercomparison of simple models in EMRAS-2 project.
    Periáñez R; Thiessen KM; Chouhan SL; Mancini F; Navarro E; Sdouz G; Trifunović D
    J Environ Radioact; 2016 Oct; 162-163():225-234. PubMed ID: 27267160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of CAP88 PC to infer differences in the chemical form of 129I emitted from a fuel reprocessing facility.
    Fritz BG; Phillips NR
    J Environ Radioact; 2013 Jun; 120():1-5. PubMed ID: 23395750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty in transport factors used to calculate historical dose from 131I releases at the Savannah River Site.
    Simpkins AA; Hamby DM
    Health Phys; 2003 Aug; 85(2):194-203. PubMed ID: 12938966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring iodine-129 in air and milk samples collected near the Hanford Site: an investigation of historical iodine monitoring data.
    Fritz BG; Patton GW
    J Environ Radioact; 2006; 86(1):64-77. PubMed ID: 16125287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of an epidemiologic study of thyroid neoplasia in persons exposed to radionuclides from the Hanford nuclear facility between 1944 and 1956.
    Cate S; Ruttenber AJ; Conklin AW
    Health Phys; 1990 Aug; 59(2):169-78. PubMed ID: 2370141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of potential atmospheric transport and deposition patterns due to Russian Pacific Fleet operations.
    Mahura AG; Baklanov AA; Sørensen JH; Parker FL; Novikov V; Brown K; Compton KL
    Environ Monit Assess; 2005 Feb; 101(1-3):261-87. PubMed ID: 15739268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anthropogenic 129I in the atmosphere: overview over major sources, transport processes and deposition pattern.
    Reithmeier H; Lazarev V; Rühm W; Nolte E
    Sci Total Environ; 2010 Oct; 408(21):5052-64. PubMed ID: 20692686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion.
    Terada H; Katata G; Chino M; Nagai H
    J Environ Radioact; 2012 Oct; 112():141-54. PubMed ID: 22721917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. JMA's regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident.
    Saito K; Shimbori T; Draxler R
    J Environ Radioact; 2015 Jan; 139():185-199. PubMed ID: 24703334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.