These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 8830969)
1. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Mooney DJ; Baldwin DF; Suh NP; Vacanti JP; Langer R Biomaterials; 1996 Jul; 17(14):1417-22. PubMed ID: 8830969 [TBL] [Abstract][Full Text] [Related]
2. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Zhang R; Ma PX J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949 [TBL] [Abstract][Full Text] [Related]
3. Preparation of cylinder-shaped porous sponges of poly(L-lactic acid), poly(DL-lactic-co-glycolic acid), and poly(ε-caprolactone). He X; Kawazoe N; Chen G Biomed Res Int; 2014; 2014():106082. PubMed ID: 24719843 [TBL] [Abstract][Full Text] [Related]
4. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528 [TBL] [Abstract][Full Text] [Related]
5. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Zhu XH; Lee LY; Jackson JS; Tong YW; Wang CH Biotechnol Bioeng; 2008 Aug; 100(5):998-1009. PubMed ID: 18551526 [TBL] [Abstract][Full Text] [Related]
6. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505 [TBL] [Abstract][Full Text] [Related]
7. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Wang X; Li W; Kumar V Biomaterials; 2006 Mar; 27(9):1924-9. PubMed ID: 16219346 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Nam YS; Park TG Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188 [TBL] [Abstract][Full Text] [Related]
9. Macroporous polymer foams by hydrocarbon templating. Shastri VP; Martin I; Langer R Proc Natl Acad Sci U S A; 2000 Feb; 97(5):1970-5. PubMed ID: 10696111 [TBL] [Abstract][Full Text] [Related]
10. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Thomson RC; Yaszemski MJ; Powers JM; Mikos AG Biomaterials; 1998 Nov; 19(21):1935-43. PubMed ID: 9863527 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold. Wu L; Zhang H; Zhang J; Ding J Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446 [TBL] [Abstract][Full Text] [Related]
13. Solvent-free protein encapsulation within biodegradable polymer foams. Hile DD; Pishko MV Drug Deliv; 2004; 11(5):287-93. PubMed ID: 15742553 [TBL] [Abstract][Full Text] [Related]
14. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation. Mo X; Weber HJ; Ramakrishna S Int J Artif Organs; 2006 Aug; 29(8):790-9. PubMed ID: 16969757 [TBL] [Abstract][Full Text] [Related]
15. Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture. Mikos AG; Lyman MD; Freed LE; Langer R Biomaterials; 1994 Jan; 15(1):55-8. PubMed ID: 8161659 [TBL] [Abstract][Full Text] [Related]
16. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
17. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering. Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of porous PDLLA/HA composite foams by supercritical carbon dioxide technology. Teng X; Ren J; Gu S J Biomed Mater Res B Appl Biomater; 2007 Apr; 81(1):185-93. PubMed ID: 16924605 [TBL] [Abstract][Full Text] [Related]
20. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent. Young TJ; Johnston KP; Mishima K; Tanaka H J Pharm Sci; 1999 Jun; 88(6):640-50. PubMed ID: 10350502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]