BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8831510)

  • 21. Specificity of synergistic coronary flow enhancement by adenosine and pulsatile perfusion in the dog.
    Pagliaro P; Senzaki H; Paolocci N; Isoda T; Sunagawa G; Recchia FA; Kass DA
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):271-80. PubMed ID: 10517818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide contributes to oxygen demand-supply balance in hypoperfused right ventricle.
    Setty S; Tune JD; Downey HF
    Cardiovasc Res; 2004 Dec; 64(3):431-6. PubMed ID: 15537496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Basal release of nitric oxide is decreased in the coronary circulation in patients with heart failure.
    Mohri M; Egashira K; Tagawa T; Kuga T; Tagawa H; Harasawa Y; Shimokawa H; Takeshita A
    Hypertension; 1997 Jul; 30(1 Pt 1):50-6. PubMed ID: 9231820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemodilution does not alter the coronary vasodilating effects of endogenous or exogenous nitric oxide.
    Crystal GJ; El-Orbany M; Zhou X; Salem MR; Kim SJ
    Can J Anaesth; 2008 Aug; 55(8):507-14. PubMed ID: 18676385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of nitric oxide production aggravates myocardial hypoperfusion during exercise in the presence of a coronary artery stenosis.
    Duncker DJ; Bache RJ
    Circ Res; 1994 Apr; 74(4):629-40. PubMed ID: 8137499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coronary vasoconstriction produced by vasopressin in anesthetized goats. Role of vasopressin V1 and V2 receptors and nitric oxide.
    Fernández N; García JL; García-Villalón AL; Monge L; Gómez B; Diéguez G
    Eur J Pharmacol; 1998 Jan; 342(2-3):225-33. PubMed ID: 9548390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glutathione causes coronary vasodilation via a nitric oxide- and soluble guanylate cyclase-dependent mechanism.
    Cheung PY; Schulz R
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1231-8. PubMed ID: 9321811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of basal release of nitric oxide on systolic and diastolic function of both ventricles.
    Mankad P; Yacoub M
    J Thorac Cardiovasc Surg; 1997 Apr; 113(4):770-6. PubMed ID: 9104987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of basal release of nitric oxide in the presence of acute left ventricular dysfunction: comparative study with normal condition.
    Yamamoto K; Masuyama T; Mano T; Naito J; Kondo H; Nagano R; Hori M; Kamada T
    J Card Fail; 1996 Mar; 2(1):33-9. PubMed ID: 8798103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs.
    Tune JD; Richmond KN; Gorman MW; Feigl EO
    Circulation; 2000 Jun; 101(25):2942-8. PubMed ID: 10869267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roles of nitric oxide and adenosine in the regulation of coronary conductance in the basal state and during reactive hyperemia.
    Otomo J; Nozaki N; Tomoike H
    Jpn Circ J; 1997 May; 61(5):441-9. PubMed ID: 9192244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The autoregulation of the coronary flow of the isolated rat heart after NO-synthase blockade].
    Solodkov AP; Bozhko AP; Shebeko VI; Rodionov IuIa
    Biull Eksp Biol Med; 1993 Sep; 116(9):242-4. PubMed ID: 7509647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia.
    Buus NH; Bøttcher M; Hermansen F; Sander M; Nielsen TT; Mulvany MJ
    Circulation; 2001 Nov; 104(19):2305-10. PubMed ID: 11696470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of nitric oxide in bradykinin-induced dilation of coronary resistance vessels in patients with hypercholesterolemia.
    Kato M; Shiode N; Teragawa H; Hirao H; Yamada T; Yamagata T; Matsuura H; Kajiyama G
    Intern Med; 1999 May; 38(5):394-400. PubMed ID: 10397075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of inhibition of nitric oxide formation on regional blood flow in experimental myocardial infarction.
    Drexler H; Hablawetz E; Lu W; Riede U; Christes A
    Circulation; 1992 Jul; 86(1):255-62. PubMed ID: 1617777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coronary and systemic hemodynamic effects of sustained inhibition of nitric oxide synthesis in conscious dogs. Evidence for cross talk between nitric oxide and cyclooxygenase in coronary vessels.
    Puybasset L; Béa ML; Ghaleh B; Giudicelli JF; Berdeaux A
    Circ Res; 1996 Aug; 79(2):343-57. PubMed ID: 8756014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Hemodynamic effects of sub-chronic NO synthase inhibition in conscious dogs: role of EDRF/NO in muscular exertion].
    Puybasset L; Béa ML; Simon L; Ghaleh B; Giudicelli JF; Berdeaux A
    Arch Mal Coeur Vaiss; 1995 Aug; 88(8):1217-21. PubMed ID: 8572877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of cross-linked hemoglobin on regional vascular conductance in dogs.
    Dietz NM; Martin CM; Beltran-del-Rio AG; Joyner MJ
    Anesth Analg; 1997 Aug; 85(2):265-73. PubMed ID: 9249098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of vasomotor tone to myocardial function and regional metabolism during constant flow ischaemia in swine.
    McFalls EO; Pantely GA; Anselone CG; Bristow DJ
    Cardiovasc Res; 1990 Oct; 24(10):813-20. PubMed ID: 2085836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.