BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 8831766)

  • 1. 1H and 13C NMR relaxation studies of molecular dynamics of the thyroid hormones thyroxine, 3,5,3'-triiodothyronine, and 3,5-diiodothyronine.
    Duggan BM; Craik DJ
    J Med Chem; 1996 Sep; 39(20):4007-16. PubMed ID: 8831766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational dynamics of thyroid hormones by variable temperature nuclear magnetic resonance: the role of side chain rotations and cisoid/transoid interconversions.
    Duggan BM; Craik DJ
    J Med Chem; 1997 Jul; 40(14):2259-65. PubMed ID: 9216845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton nuclear magnetic resonance assignments of thyroid hormone and its analogues.
    Ong RL; Pittman CS
    Biochem Int; 1985 May; 10(5):803-11. PubMed ID: 4015673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thyroid hormone interactions with DMPC bilayers. A molecular dynamics study.
    Petruk AA; Marti MA; Alvarez RM
    J Phys Chem B; 2009 Oct; 113(40):13357-64. PubMed ID: 19743839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study.
    Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C
    Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1H- and 13C-n.m.r. studies of the antitumour antibiotic luzopeptin. Resonance assignments, conformation and flexibility in solution.
    Searle MS; Hall JG; Wakelin PG
    Biochem J; 1988 Nov; 256(1):271-8. PubMed ID: 3223903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Thyroid hormones and their precursors I. Biochemical properties].
    Tóth G; Noszál B
    Acta Pharm Hung; 2013; 83(2):35-45. PubMed ID: 23926648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic resonance investigations of calcium antagonist drugs. II: Conformational and dynamic features of verapamil in [2H6]DMSO.
    Maccotta A; Scibona G; Valensin G; Gaggelli E; Botre F; Botre C
    J Pharm Sci; 1991 Jun; 80(6):586-9. PubMed ID: 1658296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of glass-forming di-n-butyl phthalate as studied by NMR.
    Szcześniak E; Głowinkowski S; Suchański W; Jurga S
    Solid State Nucl Magn Reson; 1997 Apr; 8(2):73-9. PubMed ID: 9203281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular microdynamical and conformational parameters of peptides from 1H and 13C NMR spin-lattice relaxation. Tetragastrin.
    Bleich HE; Cutnell JD; Glasel JA
    Biochemistry; 1976 Jun; 15(11):2455-66. PubMed ID: 1276155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed.
    Agarwal V; Xue Y; Reif B; Skrynnikov NR
    J Am Chem Soc; 2008 Dec; 130(49):16611-21. PubMed ID: 19049457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evidence for the role of cross-relaxation in proton nuclear magnetic resonance spin lattice relaxation time measurements in proteins.
    Sykes BD; Hull WE; Snyder GH
    Biophys J; 1978 Feb; 21(2):137-46. PubMed ID: 623862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic structure of proteins in solid state. 1H and 13C NMR relaxation study.
    Krushelnitsky AG; Fedotov VD; Spevacek J; Straka J
    J Biomol Struct Dyn; 1996 Oct; 14(2):211-24. PubMed ID: 8913857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational flexibility of luteinizing hormone-releasing hormone in aqueous solution. A carbon-13 spin-lattice relaxation time study.
    Deslauriers R; Levy GC; McGregor WH; Sarantakis K; Smith IC
    Biochemistry; 1975 Sep; 14(19):4335-43. PubMed ID: 170960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics and structure of the random coil and helical states of the collagen peptide, alpha 1-CB2, as determined by 13C magnetic resonance.
    Torchia DA; Lyerla JR; Quattrone AJ
    Biochemistry; 1975 Mar; 14(5):887-900. PubMed ID: 1125175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C NMR studies of the molecular flexibility of antidepressants.
    Munro SL; Andrews PR; Craik DJ; Gale DJ
    J Pharm Sci; 1986 Feb; 75(2):133-41. PubMed ID: 3958921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration dependence of backbone and side chain polylysine dynamics: a 13C solid-state NMR and IR spectroscopy study.
    Krushelnitsky A; Faizullin D; Reichert D
    Biopolymers; 2004 Jan; 73(1):1-15. PubMed ID: 14691935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and dynamical characterization of piroxicam by 1H- and 13C-NMR relaxation studies.
    Rossi C; Casini A; Picchi MP; Laschi F; Calabria A; Marcolongo R
    Biophys Chem; 1987 Sep; 27(3):255-61. PubMed ID: 3663848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.