BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 8831781)

  • 1. The "+70 pause": hypothesis of a translational control of membrane protein assembly.
    Képès F
    J Mol Biol; 1996 Sep; 262(2):77-86. PubMed ID: 8831781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosome-mediated translational pause and protein domain organization.
    Thanaraj TA; Argos P
    Protein Sci; 1996 Aug; 5(8):1594-612. PubMed ID: 8844849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene.
    Van Way SM; Hosking ER; Braun TF; Manson MD
    J Mol Biol; 2000 Mar; 297(1):7-24. PubMed ID: 10704303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The signal recognition particle receptor alpha subunit assembles co-translationally on the endoplasmic reticulum membrane during an mRNA-encoded translation pause in vitro.
    Young JC; Andrews DW
    EMBO J; 1996 Jan; 15(1):172-81. PubMed ID: 8598200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PAUSE software for analysis of translational control over protein targeting: application to E. nidulans membrane proteins.
    Dessen P; Képès F
    Gene; 2000 Feb; 244(1-2):89-96. PubMed ID: 10689191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: the central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism.
    Beaudoin F; Napier JA
    Planta; 2002 Jun; 215(2):293-303. PubMed ID: 12029479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional consequences of the in-frame insertion of a transposon into the mutated gamma amino butyric acid transporter of Saccharomyces cerevisiae.
    Naghibalhossaini F; Nault F; Saragovi U; Nedev H; Johnstone R
    Med Sci Monit; 2002 Nov; 8(11):BR460-70. PubMed ID: 12444371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosome can resume the translation in both +1 or -1 frames after encountering an AGA cluster in Escherichia coli.
    Lainé S; Thouard A; Komar AA; Rossignol JM
    Gene; 2008 Apr; 412(1-2):95-101. PubMed ID: 18313865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of three adjacent open reading frames from the right arm of yeast chromosome XVI.
    Waśkiewicz-Staniorowska B; Skała J; Jasiński M; Grenson M; Goffeau A; Ułaszewski S
    Yeast; 1998 Aug; 14(11):1027-39. PubMed ID: 9730282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding of the MS2 coat protein in Escherichia coli is modulated by translational pauses resulting from mRNA secondary structure and codon usage: a hypothesis.
    Guisez Y; Robbens J; Remaut E; Fiers W
    J Theor Biol; 1993 May; 162(2):243-52. PubMed ID: 8412226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein secondary structural types are differentially coded on messenger RNA.
    Thanaraj TA; Argos P
    Protein Sci; 1996 Oct; 5(10):1973-83. PubMed ID: 8897597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of functionally important regions of the Saccharomyces cerevisiae mitochondrial translational activator Cbs1p.
    Krause-Buchholz U; Tzschoppe K; Paret C; Ostermann K; Rödel G
    Yeast; 2000 Mar; 16(4):353-63. PubMed ID: 10669873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of mitochondrial translation with the formation of respiratory complexes in yeast mitochondria.
    Chacińska A; Boguta M
    Acta Biochim Pol; 2000; 47(4):973-91. PubMed ID: 11996120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria.
    Szyrach G; Ott M; Bonnefoy N; Neupert W; Herrmann JM
    EMBO J; 2003 Dec; 22(24):6448-57. PubMed ID: 14657018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context-dependent codon bias and messenger RNA longevity in the yeast transcriptome.
    Carlini DB
    Mol Biol Evol; 2005 Jun; 22(6):1403-11. PubMed ID: 15772378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation.
    Cvijović M; Dalevi D; Bilsland E; Kemp GJ; Sunnerhagen P
    BMC Bioinformatics; 2007 Aug; 8():295. PubMed ID: 17686169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.