BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8831795)

  • 21. Involvement of two domains with helix-turn-helix and zinc finger motifs in the binding of IS1 transposase to terminal inverted repeats.
    Ohta S; Yoshimura E; Ohtsubo E
    Mol Microbiol; 2004 Jul; 53(1):193-202. PubMed ID: 15225314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural role of a buried salt bridge in the 434 repressor DNA-binding domain.
    Pervushin K; Billeter M; Siegal G; Wüthrich K
    J Mol Biol; 1996 Dec; 264(5):1002-12. PubMed ID: 9000626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Mu repressor-DNA complex contains an immobilized 'wing' within the minor groove.
    Wojciak JM; Iwahara J; Clubb RT
    Nat Struct Biol; 2001 Jan; 8(1):84-90. PubMed ID: 11135677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA binding domains and nuclear localization signal of LEDGF: contribution of two helix-turn-helix (HTH)-like domains and a stretch of 58 amino acids of the N-terminal to the trans-activation potential of LEDGF.
    Singh DP; Kubo E; Takamura Y; Shinohara T; Kumar A; Chylack LT; Fatma N
    J Mol Biol; 2006 Jan; 355(3):379-94. PubMed ID: 16318853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [DNA-recognition by helix-turn-helix variants in DNA-binding domains].
    Nishimura Y
    Tanpakushitsu Kakusan Koso; 2000 Jun; 45(9 Suppl):1683-93. PubMed ID: 10879150
    [No Abstract]   [Full Text] [Related]  

  • 27. Transcriptional repressor CopR: structure model-based localization of the deoxyribonucleic acid binding motif.
    Steinmetzer K; Hillisch A; Behlke J; Brantl S
    Proteins; 2000 Mar; 38(4):393-406. PubMed ID: 10707026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An aromatic stacking interaction between subunits helps mediate DNA sequence specificity: operator site discrimination by phage lambda cI repressor.
    Huang YT; Rusinova E; Ross JB; Senear DF
    J Mol Biol; 1997 Mar; 267(2):403-17. PubMed ID: 9096234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the Escherichia coli transcriptional activator MarA using alanine-scanning mutagenesis: residues important for DNA binding and activation.
    Gillette WK; Martin RG; Rosner JL
    J Mol Biol; 2000 Jun; 299(5):1245-55. PubMed ID: 10873449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineered improvements in DNA-binding function of the MATa1 homeodomain reveal structural changes involved in combinatorial control.
    Hart B; Mathias JR; Ott D; McNaughton L; Anderson JS; Vershon AK; Baxter SM
    J Mol Biol; 2002 Feb; 316(2):247-56. PubMed ID: 11851335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions.
    Mueller TD; Feigon J
    J Mol Biol; 2002 Jun; 319(5):1243-55. PubMed ID: 12079361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR.
    Penin F; Geourjon C; Montserret R; Böckmann A; Lesage A; Yang YS; Bonod-Bidaud C; Cortay JC; Nègre D; Cozzone AJ; Deléage G
    J Mol Biol; 1997 Jul; 270(3):496-510. PubMed ID: 9237914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of the cyanobacterial metallothionein repressor SmtB: a model for metalloregulatory proteins.
    Cook WJ; Kar SR; Taylor KB; Hall LM
    J Mol Biol; 1998 Jan; 275(2):337-46. PubMed ID: 9466913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.
    Sauvé S; Tremblay L; Lavigne P
    J Mol Biol; 2004 Sep; 342(3):813-32. PubMed ID: 15342239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional differences of SWIRM domain subtypes.
    Yoneyama M; Tochio N; Umehara T; Koshiba S; Inoue M; Yabuki T; Aoki M; Seki E; Matsuda T; Watanabe S; Tomo Y; Nishimura Y; Harada T; Terada T; Shirouzu M; Hayashizaki Y; Ohara O; Tanaka A; Kigawa T; Yokoyama S
    J Mol Biol; 2007 May; 369(1):222-38. PubMed ID: 17428495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chapter 1: Variation in form and function the helix-turn-helix regulators of the GntR superfamily.
    Hoskisson PA; Rigali S
    Adv Appl Microbiol; 2009; 69():1-22. PubMed ID: 19729089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization.
    Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y
    J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA-binding of phenylalanyl-tRNA synthetase is accompanied by loop formation of the double-stranded DNA.
    Dou X; Limmer S; Kreutzer R
    J Mol Biol; 2001 Jan; 305(3):451-8. PubMed ID: 11152603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A map of the biotin repressor-biotin operator interface: binding of a winged helix-turn-helix protein dimer to a forty base-pair site.
    Streaker ED; Beckett D
    J Mol Biol; 1998 May; 278(4):787-800. PubMed ID: 9614942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.