These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 8832080)
1. The involvement of the endothelium in the relaxation of the leopard frog (Rana pipiens) aorta in response to acetylcholine. Knight GE; Burnstock G Br J Pharmacol; 1996 Jul; 118(6):1518-22. PubMed ID: 8832080 [TBL] [Abstract][Full Text] [Related]
2. Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. Chaytor AT; Evans WH; Griffith TM J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):561-73. PubMed ID: 9508817 [TBL] [Abstract][Full Text] [Related]
3. Comparison of effects of chronic and acute administration of NG-nitro-L-arginine methyl ester to the rat on inhibition of nitric oxide-mediated responses. Bryant CE; Allcock GH; Warner TD Br J Pharmacol; 1995 Apr; 114(8):1673-9. PubMed ID: 7541283 [TBL] [Abstract][Full Text] [Related]
4. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Moore PK; al-Swayeh OA; Chong NW; Evans RA; Gibson A Br J Pharmacol; 1990 Feb; 99(2):408-12. PubMed ID: 2328404 [TBL] [Abstract][Full Text] [Related]
5. Comparative effects of L-NOARG and L-NAME on basal blood flow and ACh-induced vasodilatation in rat diaphragmatic microcirculation. Chang HY; Chen CW; Hsiue TR Br J Pharmacol; 1997 Jan; 120(2):326-32. PubMed ID: 9117127 [TBL] [Abstract][Full Text] [Related]
6. Differential effects of L-arginine on the inhibition by NG-nitro-L-arginine methyl ester of basal and agonist-stimulated EDRF activity. Randall MD; Griffith TM Br J Pharmacol; 1991 Nov; 104(3):743-9. PubMed ID: 1797335 [TBL] [Abstract][Full Text] [Related]
7. Endothelium-dependent relaxations in sheep pulmonary arteries and veins: resistance to block by NG-nitro-L-arginine in pulmonary hypertension. Kemp BK; Smolich JJ; Ritchie BC; Cocks TM Br J Pharmacol; 1995 Nov; 116(5):2457-67. PubMed ID: 8581285 [TBL] [Abstract][Full Text] [Related]
8. Vascular pharmacodynamics of NG-nitro-L-arginine methyl ester in vitro and in vivo. Wang YX; Poon CI; Pang CC J Pharmacol Exp Ther; 1993 Dec; 267(3):1091-9. PubMed ID: 8263770 [TBL] [Abstract][Full Text] [Related]
9. Effects of argininosuccinic acid on nitric oxide-mediated relaxations in rat aorta and anococcygeus muscle. Rand MJ; Li CG Clin Exp Pharmacol Physiol; 1992 May; 19(5):331-4. PubMed ID: 1325882 [TBL] [Abstract][Full Text] [Related]
10. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance. García-Pascual A; Labadía A; Jimenez E; Costa G Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549 [TBL] [Abstract][Full Text] [Related]
11. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory actions of diphenyleneiodonium on endothelium-dependent vasodilatations in vitro and in vivo. Wang YX; Poon CI; Poon KS; Pang CC Br J Pharmacol; 1993 Nov; 110(3):1232-8. PubMed ID: 7507779 [TBL] [Abstract][Full Text] [Related]
13. Vascular pharmacology of methylene blue in vitro and in vivo: a comparison with NG-nitro-L-arginine and diphenyleneiodonium. Wang YX; Cheng X; Pang CC Br J Pharmacol; 1995 Jan; 114(1):194-202. PubMed ID: 7712018 [TBL] [Abstract][Full Text] [Related]
14. Endothelium-dependent relaxation to acetylcholine in the rabbit basilar artery: importance of membrane hyperpolarization. Rand VE; Garland CJ Br J Pharmacol; 1992 May; 106(1):143-50. PubMed ID: 1380379 [TBL] [Abstract][Full Text] [Related]
15. Impairment of fetal endothelium-dependent relaxation in a rat model of preeclampsia by chronic nitric oxide synthase inhibition. Martínez-Orgado J; González R; Alonso MJ; Salaices M J Soc Gynecol Investig; 2004 Feb; 11(2):82-8. PubMed ID: 14980309 [TBL] [Abstract][Full Text] [Related]
16. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Zygmunt PM; Högestätt ED Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760 [TBL] [Abstract][Full Text] [Related]
18. Acetylcholine-induced endothelium-independent relaxations in monkey isolated superior and inferior caval veins. Fukushima S; Ohhashi T Br J Pharmacol; 1993 Aug; 109(4):992-7. PubMed ID: 8401953 [TBL] [Abstract][Full Text] [Related]
19. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y; Otsuka A; Tanaka H; Shigenobu K Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [TBL] [Abstract][Full Text] [Related]
20. Endothelium-dependent modulation of resistance vessel contraction: studies with NG-nitro-L-arginine methyl ester and NG-nitro-L-arginine. Bennett MA; Watt PA; Thurston H Br J Pharmacol; 1992 Oct; 107(2):616-21. PubMed ID: 1422603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]