These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8832166)

  • 1. Deterministic model of DNA gel electrophoresis in strong electric fields.
    Lee N; Obukhov S; Rubinstein M
    Electrophoresis; 1996 Jun; 17(6):1011-7. PubMed ID: 8832166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic symmetry breaking in a model of polymer reptation.
    Aalberts DP; van Leeuwen JM
    Electrophoresis; 1996 Jun; 17(6):1003-10. PubMed ID: 8832165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic mobility of linear and star-branched DNA in semidilute polymer solutions.
    Saha S; Heuer DM; Archer LA
    Electrophoresis; 2006 Aug; 27(16):3181-94. PubMed ID: 16850503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels [corrected].
    Jendrejack RM; Schwartz DC; de Pablo JJ; Graham MD
    J Chem Phys; 2004 Feb; 120(5):2513-29. PubMed ID: 15268395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoresis in strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed-field-trapping electrophoresis: a computer simulation study.
    Desruisseaux C; Slater GW
    Electrophoresis; 1996 Apr; 17(4):623-32. PubMed ID: 8738319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of DNA electrophoresis.
    Batoulis J; Pistoor N; Kremer K; Frisch HL
    Electrophoresis; 1989; 10(5-6):442-6. PubMed ID: 2670550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model for DNA separation by capillary electrophoresis in entangled polymer solutions.
    Liu C; Xu X; Wang Q; Chen J
    J Chromatogr A; 2007 Feb; 1142(2):222-30. PubMed ID: 17239893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of the directional displacement of rod-shaped, arc-shaped, and circular objects in an array of obstacles, representing a simple model for the gel electrophoresis of small DNA.
    Wheeler DL; Chrambach A
    Biopolymers; 1995 Feb; 35(2):179-85. PubMed ID: 7696563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: biosynthesis and characterization.
    Haider M; Leung V; Ferrari F; Crissman J; Powell J; Cappello J; Ghandehari H
    Mol Pharm; 2005; 2(2):139-50. PubMed ID: 15804188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyacrylamide solutions for DNA sequencing by capillary electrophoresis: mesh sizes, separation and dispersion.
    Wu C; Quesada MA; Schneider DK; Farinato R; Studier FW; Chu B
    Electrophoresis; 1996 Jun; 17(6):1103-9. PubMed ID: 8832178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuating bond model of DNA gel electrophoresis.
    Schönherr G; Noolandi J
    Electrophoresis; 1991 Jun; 12(6):432-5. PubMed ID: 1889392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA electrophoresis in microlithographic arrays.
    Volkmuth WD; Austin RH
    Nature; 1992 Aug; 358(6387):600-2. PubMed ID: 1501715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nonparallel alternating fields on the mobility of DNA in the biased reptation model of gel electrophoresis.
    Slater GW; Noolandi J
    Electrophoresis; 1989; 10(5-6):413-28. PubMed ID: 2767041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of capillary rise experiments in nanotubes coated with polymer brushes.
    Dimitrov DI; Milchev A; Binder K
    Langmuir; 2008 Feb; 24(4):1232-9. PubMed ID: 17918870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reorientation of large DNA molecules in concentrated polyacrylamide solution during crossed-field electrophoresis.
    Oana H; Doi M; Ueda M; Yoshikawa K
    Electrophoresis; 1997 Oct; 18(11):1912-5. PubMed ID: 9420143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin loops are responsible for higher counts of small DNA fragments induced by high-LET radiation, while chromosomal domains do not affect the fragment sizes.
    Ponomarev AL; Cucinotta FA
    Int J Radiat Biol; 2006 Apr; 82(4):293-305. PubMed ID: 16690597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical study of persistence length effects on DNA conformation in sequencing electrophoresis.
    Guerry E; Martin OC; Tricoire H; Siebert R; Valentin L
    Electrophoresis; 1996 Sep; 17(9):1420-4. PubMed ID: 8905257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of the overshoot in the build-up of orientation of long DNA during gel electrophoresis based on a distribution of oscillation times.
    Carlsson C; Larsson A
    Electrophoresis; 1996 Sep; 17(9):1425-35. PubMed ID: 8905258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular deformation and free-solution electrophoresis of DNA-uncharged polymer conjugates at high field strengths: theoretical predictions. Part 1: hydrodynamic segregation.
    McCormick LC; Slater GW
    Electrophoresis; 2007 Feb; 28(4):674-82. PubMed ID: 17245697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.